
Laurent Zimmer, Michaël Lafaye

Dassault Aviation – Direction Générale Technique

78 quai Marcel Dassault - 92552 Saint-Cloud - France

laurent.zimmer@dassault-aviation.com , michael.lafaye@dassault-aviation.com

Pierre-Alain Yvars

Institut Supérieur de Mécanique de Paris (SupMéca) - QUARTZ

3 rue Fernand Hainaut – 93407 Saint-Ouen - France

pierre-alain.yvars@supmeca.fr

Models of requirements for avionics architec-

ture synthesis: safety, capacity and security

Laurent Zimmer, Pierre-Alain Yvars, Michaël Lafaye

Abstract Embedded computing platforms must support the execution of an in-

creasing number of system functions and must scrupulously respect multiple func-

tional and non-functional constraints. Their architecture is more and more com-

plex and consequently the preliminary definition of eligible architectures based on

the competence and experience of a small number of expert designers is an in-

creasingly difficult activity. In the future, they will have to use tools to assist in

the generation of correct by construction architectures. In this context, we have

been interested in formal requirements modeling and in the computer resolution of

these formal models to find eligible architectures. We studied an industrial prob-

lem of assisted deployment of system functions on an embedded modular avionics

platform with capacity requirements on hardware resources and security and safe-

ty requirements on functions. We developed a model-based approach using the

DEsign Problem Specification (DEPS) language, a language dedicated to model-

ing and solving design problems. The results obtained show that it is possible to

model complex requirements at the level required by the system architect and that

taking them into account during the resolution process generates correct solutions

to them.

Keywords architecture synthesis, formal specification, requirements, safety, secu-

rity, capacity, DEPS.

1 Introduction

Avionics systems are becoming increasingly complex. According to [1], in the

military field, we have gone from 15 subsystems and less than 40% of software-

intensive systems for the F16 to 135 subsystems including 90% of software-

intensive systems for the F35. The evolution in the civilian domain is less extreme

but it follows the same trend. At the same time the number and complexity of

technical or regulatory specifications have increased, as has the complexity of

industrial organization. This overall increase in complexity has led to an explosion

in development costs and lead times which has led industrialists to review their

design methods and tools. According to studies financed by DARPA [1, 2, 3] the

new design process to be imagined must be based on the development of four key

elements:

1. Abstraction-based design tools;

2. System complexity metrics;

3. Advanced methods of architecture synthesis;

4. Robust uncertainty management.

The work presented concerns exclusively the first [2] and the third point [3]. For

the first point, the aim is to develop or use a formal description language (FDL)

capable of representing both a complex system and the specifications or require-

ments related to it. In particular, the FDL must allow the system to be represented

at compatible levels of abstraction of the various design stages, including the pre-

liminary design stages. The languages envisaged are AADL, UML or SysML.

The second point is to have "advanced means of architecture synthesis" available

very early in the design process, which would allow automatic exploration of the

design space to search for eligible architectures, i.e. those compatible with the

various system requirements.

The idea being that the complexity of the systems to be designed will make the

task of listing and evaluating candidate architectures beyond the reach of experts if

they are not supported by Information Technology.

To develop a design tool capable of synthesizing eligible architectures of software

processing chains have been proposed in seminal work [3, 4, 5].

 More recent work has focused on the development of a language for modeling

design problems with a view to solving them [6]. The aim is to develop a true

representation language of the problem to be solved. The DEPS language allows,

on the one hand, to model a sub-defined system and its associated requirements

and, on the other hand, to solve to find a synthesis solution.

The purpose of this paper is to show the capabilities of DEPS by formalizing a

problem of deployment of aircraft functions on an embedded computer architec-

ture of integrated modular avionics type. We have limited ourselves in this paper

both in types of architecture elements (the CPUs) and in types of requirements

(safety, maximum memory capacity of the CPUs, security). These elements are

extracted from a complete Integrated Modular Avionic (IMA) problem that was

formalized in DEPS and solved using the DEPS Studio environment.

The paper is organized as follows: we first position our work in the context of

modular avionics, operational safety and the distribution of roles between actors,

then we present the DEPS language and the associated tools we use. Then we will

describe the case study and the problem posed. Then we will discuss the modeling

that has been done in DEPS and the results we have obtained. Finally we will

present some perspectives for the evolution of this work both from the point of

view of the generalization of the case study and the evolution of the DEPS formal-

ism.

2 Problem

2.1 General framework
The problem consists in deploying system functions consisting of software com-

ponents on IMA-type hardware [11, 12]. The IMA allows software development

to be decoupled from the underlying hardware. In return, it is necessary to be able

to allocate computing and communication resources that allow the system func-

tions to be executed. In the IMA, the concept of partitioning reflects this resource

allocation.

 The aim is to find a scheme for allocating computers to software that meets the

needs in terms of resources while respecting resource capacities, latency con-

straints for the execution of through functional chains (i.e. processed via the exe-

cution of several software programs) and operational reliability. Due to these mul-

tiple constraints and the large number of deployments, finding a satisfactory allo-

cation manually becomes very difficult.

In order to illustrate our approach, we will limit ourselves to the case of a software

deployment problem on a set of IMA CPUs that must comply with operational

safety, memory capacity and security requirements. These requirements are

among the most important, as all civil aircraft are designed with an approach

aimed at reducing the risk of accidents and therefore potentially human losses to a

minimum.

2.2 Requirements

2.2.1 Safety requirements
The purpose of safety is to establish permissible levels of reliability, availability

and maintainability of essential aircraft systems to ensure the safety of the aircraft

in flight and on the ground. The requirements to achieve these levels result from

the analysis of cases of failures and malfunctions, which may lead, for example, to

loss of functionality or data corruption.

In terms of platform architecture, these analyses lead to a set of safety patterns.

This is a proposal to divide an aircraft function into software components with

associated segregation or dissimilarity requirements inside. For example, the ro-

bustness of a function in the event of a failure leads to a redundancy type "pattern"

of the software executing this function and its deployment on two distinct comput-

ers. We will talk about hardware segregation of the resources used. These re-

quirements are not only applicable at the software level, but can concern for ex-

ample the entire processing chain of a given aircraft function, by requiring that

this function be carried out via two segregated chains. In this case, all the software

making up the first chain must be deployed on separate computers from the soft-

ware making up the second chain. An illustration of "patterns" and associated

requirements will be given in the case study section..

2.2.2 Security requirements
Security studies produce recommendations on the need to separate the deployment

of certain functions. Functions do not have the same security level [13]. Three

levels are defined: High-level-trust, Medium-level-trust and low-level-trust. They

therefore impose constraints of segregation between functions at the system level.

2.2.3 Capacity constraints
This is to take into account the requirements of respecting the maximum memory

capacity of each of the CPUs. On each computer of the adopted deployment solu-

tion, the sum of the memory capacities required for each partition associated with

it should be less than the memory size of the computer.

We are therefore confronted with a problem of "formal" representation of patterns

and associated safety, security and capacity requirements (see Fig.1.) We are thus

positioning ourselves in a modeling and synthesis approach, as opposed to the

current analysis approaches.

Fig.1 . Requirements building process

3 DEPS Language

3.1 Paradigm
Some authors [6] point out the difficulties of using formalisms such as SysML,

initially designed to represent totally defined systems (System Modeling Lan-

guage) to model problems. The current limitations of the main approaches are the

low level of variability that can be taken into account and a weak coupling be-

tween the formalism and the solver, which means that the development of models

is carried out in case of a problem in the solver language and not in the SysML

language. These limitations have been pointed out by [7].The DEPS language and

its recent integrated modeling and solving environment DEPS Studio are an at-

tempt to address these limitations.

The Design Problem Specification (DEPS) language is commonly referred to as a

Domain Specific Language (DSL). The target application domain is the specifica-

tion and resolution of engineering problems, particularly those encountered in

product or system design: sizing, configuration, allocation and architecture gen-

eration. The industrial interest is to use a unique formalism and tooling to model

and solve all these categories of synthesis problems.

DEPS is an external (as opposed to internal or embedded) dedicated language. The

source code is therefore independent of any host generalist language.

Safety Analysis
Security Analysis

Architecture (abstract) IMA Plateform (real)

B

F G D E

C

A

B

C

D

E

F

G

Req 1

Model req 1
• Pro

prié
té1

Allocation
generation

Model req 2
• Pro

prié
té1

Req 2

Req 3

Model req 3
Proper-

ty1
Proper-

A

requirements

pattern

Modeling

Structural
modeling

Requirements
modeling

4

The DEPS language can be seen as a combination of a software or system model-

ing language and a mathematical programming language. From the former have

been borrowed the features of structuring and abstraction which allow to represent

the elements and the system under study. From the latter were borrowed the math-

ematical concepts necessary to solve the engineer's problems: unknowns, equa-

tions and inequalities.

This combination makes it possible both to represent design problems and to pose

and then solve or optimize the systems of equations and inequalities that govern

them [8]. DEPS is supported by the DEPS Link society, a non-profit organization

[9].

3.2 Main characteristics

3.2.1 The Model
The fundamental feature of the language is the Model. Any Model is defined using

the keyword Model followed by its name and its (possibly empty) list of argu-

ments. It contains in order: a declaration-definition area for Constants, a declara-

tion area for Variables, a declaration-creation area for Elements and a definition

area for Properties. The definition of a DEPS Model ends with the keyword End

(see Fig.2).

The properties of a Model are the equations and inequalities that relate to the con-

stants and variables of that Model. A Model therefore contains all the ingredients

necessary to set the constraints that govern an instance of this Model. All the alge-

braic operators are available to build the properties: arithmetic, logarithmic, expo-

nential, trigonometric, hyperbolic, power,.. Some specialized constraints can also

be set as constraints on data catalogs. Any instance of a Model will necessarily

contain the set of constants, variables and Elements expressed in the Model and

will necessarily have to verify the set of properties of the Model.

Fig.2 . DEPS models of CPU and partition

As in an object language there is inheritance and composition: a Model can be

extended and inherit constants, variables and properties from another Model and it

can be composed of elements. In this case, elements are built inside the Model.

They are instances of other Models. To build an element, you have to call the

constructor of the reference model with values given to its arguments. Elements

can be passed as arguments to a Model creating an aggregation link with it. In this

case, the argument elements are named in the list of model arguments and de-

Model Partition()

Constants

Variables
icpu : CpuIndex;

Elements

Properties

End

Model Cpu(ram, icpu)

Constants

ram : Memory ;

icpu : CpuIndex ;

Variables

Elements

Properties

End

clared in the Elements zone, specifying the signature of the model to which they

refer. Constants can also be passed as arguments to a Model, allowing the creation

of Parametric Models. Any argument is named in the argument list of the model

and is declared in its respective field. Thus, in Figure 2, the CPU model has two

arguments ram and icpu whose types are declared in the constant field of the

model. DEPS also supports polymorphism.

Modeling a problem is therefore the same as specifying DEPS Models. The prob-

lem to be solved is expressed using the keyword Problem. A Problem is a Model

without arguments.

3.2.2 The Quantity
In DEPS, both constants and variables are associated with types of physical or

technological magnitudes called quantities (Quantity). They are necessary in Sys-

tems Engineering (see Fig.3).

A Quantity has :

- A basic type of quantity (called QuantityKind). For example, Real, Integer,

Length;

- A min (resp. max) bound that represents the minimum (resp. maximum) value

that can be taken by any constant or variable having the defined quantity as its

type;

- A unit of the quantity. For example the meter m for a length and u for quantities

without unit.

A QuantityKind has a basic type (integer or real), a min and max limit and the

dimension in the sense of the dimensional analysis of the quantity. For example L

for a length or U for a dimensionless quantity;

Fig.3 . QuantityKind and Quantity

3.2.3 Implementation
The DEPS Studio integrated modeling and solving environment associated with

the DEPS language includes [10] model editing functions, project management

functions based on a package mechanism, a compiler and a solver.

An integration approach rather than a model transformation approach has been

chosen. Indeed, in the case of solving a sub-defined system synthesis problem, it

will be necessary in case of unsatisfactory computation results to perform a model

tuning in the DEPS language. By deliberately opting for an integration approach,

we choose this fine-tuning process.

The computational methods we use are taken from the work on the resolution of

CSP [14]. The solver implements a revised HC4 propagation method [15] on

equations and inequalities for four types of domains: open real intervals, integer

intervals, enumerated sets of floating values and enumerated sets of signed integer

QuantityKind Integer

 Type : integer ;

 Min : -maxint;

 Max : +maxint;

 Dim : U ;

End

Quantity CpuIndex

 Kind : Integer ;

 Min : 1 ;

 Max : 7 ;

 Unit : u ;

End

values. The object-oriented architecture of the solver has been designed so that it

can be extended to other propagation and/or resolution methods.

4 DEPS modeling of system function requirements

4.1 Description of the LGS function

The LGS Landing Gear System management function is initially deployed on a

single software component.

The dependability analysis imposes two requirements (see Fig.4):

- Requirement 1: a second software component (called SC for "safety" component)

must be provided, in order to take over in case of loss of the main component

(MC). These software components, called applications, must be hardware inde-

pendent (HI) so that a hardware failure affecting MC does not affect SC;

- Requirement 2: this MC + SC processing chain, called channel, must be dupli-

cated into two hardware dissimilar (HD) channels in order to be robust to the loss

of the first chain.

Fig.4. Macroscopic view of the LGS function

From a processing point of view, the provider of the function tells us that each

component can be projected on a single partition. We therefore end up with a

decomposition scheme resulting on four partitions, with the following constraints:

- Constraint 1: the {SC1, MC1} partitions must be hardware-segregated from the

{SC2, MC2} partitions i.e. the {SC1, MC1} partitions do not share the same

CPUs than the {SC2, MC2) partitions (see Requirement 1);

- Constraint 2: SC1 and MC1 partitions must be physically segregated i.e. parti-

tions do not share the same CPU. They are not co-located (NonColoc)(see Re-

quirement 2);

- Constraint 2bis: SC2 and MC2 partitions must be physically segregated (see

Requirement 2).

4.2 Formalization in DEPS

4.2.2 Structural modeling
We have modeled the components of the aircraft landing gear system management

(LGS) function at the different levels of abstraction necessary to express the re-

LGS Channel LGS System

Partition
LGS

Application

1

1

2

1

1

2

quirements using the 2018 version of the DEPS language. These are the models

of: aircraft function, channel, application and partition.

- A partition must be projected to a computing resource to run. Each CPU resource

is represented by a maximum memory capacity (ram) and a resource index

(CpuIndex). The CPU index (icpu) that will be assigned to a partition when the

problem is solved is unknown (see Fig. 2).

- An application is split into one or more partitions. Any application is character-

ized by the memory capacity required for its execution as well as the partition(s)

of which it is composed (see Fig. 5). For the landing gear function, the applica-

tions are processed into one partition.

Fig.5 . DEPS model of the CS application of LGS

- A processing chain is here limited to one or more software components. The

channels for the landing gear function are composed of two applications (Fig. 6).

Fig. 6. DEPS model of a LGS channel

- An aircraft function is composed of one or more channels. The channels are

elements of the aircraft function model and are therefore elements of the pro-

cessing chain. In the case of the landing gear, the function comprises two channels

(see Fig. 7).

Fig. 7. DEPS model of the landing gear function

Model TwoAppChannel () extends Channel

Constants

Variables

Elements

App1: Application() ; App2: Application() ;

Properties

End

Model CLGS () extends TwoAppChannel

Constants

Variables

Elements

App1 : ALGScp() ; App2 : ALGSsp() ;

IM1 : IM (App1, App2) ;

Properties

End

Model ALGSsp () extends

OnePartApplication

Constants

ram1 : Memory = 2100 ; redefine;

Variables

Elements

Properties

End

Model OnePartApplication () extends

Application

Constants

ram1 : Memory = 100; default;

Variables

Elements

 P : Partition(ram1);

Properties

End

Model TwoChannelFunction () extends

System

Constants

Variables

Elements

Ch1 : Channel(); Ch2 : Channel();

Properties

End

Model FLGS () extends TwoChannelFunction

Constants

Variables

Elements

Ch1 : CLGS(); Ch2 : CLGS();

HD1 : HD(Ch1, Ch2);

Properties

End

4.2.3 Requirements modeling
We have created DEPS models for each requirement depending on whether it is

for partitions, applications, channels or systems.

- Non Co-location of two partitions: To say that two partitions are not co-located

is to establish a difference relationship between the two partitions and their two

icpu (see Fig. 8).

- Hardware independence of two applications (HI): Two applications are hardware

independent if and only if their respective partitions are not colocated two by two

(see Fig. 8).

Fig.8 . Requirements modeling on partitions and applications

- Hardware dissimilarity of two channels (HD): Two channels are hardware dis-

similar if and only if their respective applications are hardware independent two

by two (see Fig.9).

- Security requirements mean that some functions must be physically segregated

(HS). This means that their channels must be hardware dissimilar (see Fig.9).

Fig.9 .Requirements modeling on channels and functions

The capacity of each CPU resource must not be exceeded. A capacity model has

been created for this purpose (see Fig.10). It expresses that the load of a given

computer (Cpiom) must not exceed the maximum memory capacity of the cpu

(Cpiom.ram). To do this, the memory capacity necessary for the execution of the

Model HS(F1, F2)

Constants

Variables

Elements

 F1 : TwoChannelFunction;

 F2 : TwoChannelFunction;

 HD1 : HD(F1.Ch1, F2.Ch1);

 HD2 : HD(F1.Ch1, F2.Ch2);

 HD3 : HD(F1.Ch2, F2.Ch1);

 HD4 : HD(F1.Ch2, F2.Ch2);

Properties

End

Model NonColoc (P1, P2)

Constants

Variables

Elements

 P1 : Partition ;

P2 : Partition ;

Properties

 P1.icpu <> P2.icpu;

End

Model HI(App1, App2)

Constants

Variables

Elements

 App1 : OnePartApplication ;

 App2 : OnePartApplication ;

 NC1 : NonColoc(App1.P, App2.P)

Properties

End

Model HD (Ch1, Ch2)

Constants

Variables

Elements

Ch1 : TwoAppChannel;

Ch2 : TwoAppChannel;

IM1 : HI (Ch1.App1, Ch2.App1);

IM2 : HI (Ch1.App1, Ch2.App2);

IM3 : HI (Ch1.App2, Ch2.App1);

IM4 : HI (Ch1.App2, Ch2.App2);

Properties

End

Partition Parti is weighted by a factor of 1 or 0 (capai boolean expression) whether

or not the Partition Parti is projected on the Cpiom computer.

Fig. 10. DEPS capacity model

Finally, the general problem is posed by creating all the CPUs, the systems to be

un-deployed and the associated safety and security requirements (see Fig.11).

Fig. 11. DEPS model of IMA problem

Problem IMA

Constants

Variables

Elements

cpu1 : Cpu(30000,1); … cpu6 : Cpu(30000, 6);

(* fonctions creation with safety requirements inside*)

FCATIM1: FCATIM(); (* CATIM Function*)

FLGS1 : FLGS() ; (* LGS Function *)

..

FAFCS1 : FAFCS() ; (* AFCS Function *)

(* security requirements *)

 HS1 : HS(FCATIM1, FLGS1); .. HS6 : HS(FCATIM1, FAFCS1);

(* capacity requirements *)

capacity1 : Capacity(FLGS1.Ch1.App1.P, FLGS1.Ch1.App2.P, … , cpu1);

…

capacity 6 : Capacity(FLGS1.Ch1.App1.P, FLGS1.Ch1.App2.P, …, cpu6);

Properties

End

Model Capacity(Part1, Part2, …, Part31,Cpiom)

Constants

Variables

expr Load :

expr capa1 : Bool ;

…

expr capa31 : Bool;

Elements

Cpiom : Cpu[Memory, CpuIndex];

Part1 : Partition[Memory];

…

Part31 : Partition[Memory];

Properties

capa1 := max(1-abs(Part1.icpu-Cpiom.icpu),0) ;

…

capa31 := max(1-abs(Part31.icpu-Cpiom.icpu),0) ;

Load := capa1 * Part1.ram + … + capa31*Part31.ram ;

Load <= Cpiom.ram;

End

4.3 Results
The full industrial case study consists of a problem of deploying seven aircraft

functions (including braking, fault escalation, communication, landing gear man-

agement, etc.) on a platform composed of computers, to be determined according

to the associated operational safety, security and capacity requirements.

For each function, we therefore have as input a document describing the break-

down into software components and then the projection in terms of partitions, with

requirements for hardware segregation (projection of segregated components on

separate computers) The number of software components, partitions and channels

differs according to the functions.

After modeling the seven aircraft functions and their respective requirements, we

obtained the solutions for deploying the partitions of these functions on the CPUs.

The resolution shows that six calculators are necessary and sufficient to deploy the

seven aircraft functions (see Fig.12). The results are obtained after 2 seconds of

calculation on an Intel Core i5 4GB RAM Personal Computer.

Fig.12. DEPS Studio solution for the deployment of the seven aircraft functions

5 Conclusions and perspectives

In this article we have shown that it is possible to capture capacity, safety and

security requirements that are difficult to formalize directly without a suitable

formal language. We used the DEPS language which allowed us to model the right

abstractions at the right level to describe a sub-defined model of IMA architecture

on the one hand, and requirement models on the other hand. The deployment

problem was solved by applying constraint satisfaction methods to the properties

CATIM LGS BCS EBAS CBMF CAS AFCS

C
A

TI
M

 A
TC

C

A
TI

M
 A

O
C

A
C

A
R

S&
A

TN

LG
1

 C
P

LG
1

 S
P

LG
2

 C
P

LG
2

 S
P

B
C

S
C

O
M

B
C

S
M

O
N

EB
A

S
1

EB
A

S
2

C
B

M
F

1
C

B
M

F
2

C
A

S
1

1
C

A
S

1
2

C
A

S
1

3
C

A
S

2
1

C
A

S
2

2
C

A
S

2
3

C
A

S
3

1
C

A
S

3
2

C
A

S
3

3
A

FC
S

11

A
FC

S
12

A

FC
S

13

A
FC

S
21

A

FC
S

22

A
FC

S
23

A

FC
S

31

A
FC

S
32

A

FC
S

33

CPIOM
1 (30
Mo)

CPIOM
2 (30
Mo)

CPIOM 3 (30 Mo) CPIOM 4 (30 Mo)

C
A

TI
M

 A
TC

C

A
TI

M
 A

O
C

A
C

A
R

S&
A

TN

LG
1

 C
P

LG
1

 S
P

LG
2

 C
P

LG
2

 S
P

EB
A

S
1

EB
A

S
2

B
C

S
C

O
M

B

C
S

M
O

N

C
B

M
F

1

C
B

M
F

2

C
A

S
1

1
C

A
S

1
2

C
A

S
1

3

C
A

S
2

1
C

A
S

2
2

C
A

S
2

3

C
A

S
3

1
C

A
S

3
2

C
A

S
3

3
A

FC
S

31

A
FC

S
32

A

FC
S

33

A
FC

S
21

A

FC
S

22

A
FC

S
23

A
FC

S
11

A

FC
S

12

A
FC

S
13

28
Mo

29,3
Mo

6,6
Mo

CPIOM 5 (30
Mo)

CPIOM
6 (30
Mo)

20
Mo

27,5
Mo

of the problem. The structuring features offered by the language facilitate the

reuse of the models developed. Future work will focus on taking into account

additional elements in the processing chains (sensors, power supplies, actuators ...)

as well as on additional recommendations for DEPS language specifications.

References
[1] Becz, S., Pinto, A., Zeidner, L. E., Banaszuk, A., Khire, R., and Reeve, H. M.,Design

System for Managing Complexity in Aerospace Systems,” proc of the 13th

AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Texas, 2010

[2] Pinto A., Becz S., Reeve H.M., Correct-by-construction design of aircraft electric

power systems, proc of 10th AIAA Aviation Technology, Integration, and Operations

Conf., 2010. Published on line https://doi.org/10.2514/6.2010-9263.

[3] Zeidner L, Reeve H, Khire R, Becz S., Architectural Enumeration and Evaluation for

Identification of Low-Complexity Systems, proc of 10th AIAA Aviation Technolo-

gy, Integration, and Operations Conf., 2010. Published on line

https://doi.org/10.2514/6.2010-9264

[4] Bieber P., J.P Bodeveix J.P., Castel C., Doose D., Filali M., Minot F., Pralet C.,

Constraint-based Design of Avionics Platform - Preliminary Design Exploration,

proc of ERTS 2008 Toulouse, January 2008.

[5] Albarello, N., Welcomme J.B. and Reyterou C., A formal design synthesis and

optimization for systems architectures, proc of MOSIM’12, Bordeaux, France, 2012.

[6] Creff S, Le Noir J, Lenormand E & Madelénat S. Towards Facilities for Modeling

and Synthesis of Architectures for Resource Allocation Problem in Systems Engi-

neering. Proc of 24th Systems and Software Product Line Conference. Montreal,

2020.

[7] Shah A.A., Paredis C.J.J., Burkhart R. & Schaefer D. Combining Mathematical Pro-

gramming and SysML for automated Component Sizing of Hydraulic Systems. Jour-

nal of Computing and Information Science in Engineering (JCISE), 12(4), 2012.

https://doi.org/10.1115/1.4007764

[8] Yvars P.A., Zimmer L., DEPS un langage pour la spécification de problèmes de

conception de systèmes, proc of MOSIM’14, Nancy, 2014.

[9] DEPS Link, www.depslink.com

[10] Yvars P.A., Zimmer L., “DEPS Studio : Un environnement intégré de modélisation et

de résolution de problèmes de conception de systèmes“, proc of 8ème Conférence en

ingénierie du logiciel (CIEL 2019), Toulouse, 2019.

[11] ARINC Specifications 653-1 Avionics Application Software Standard Interface, SAE

ITC, 2017

[12] DO-297 Integrated Modular Avionics (IMA) Development Guidance and Certifica-

tion Considerations. RTCA, 2017. Available on www.rtca.org

[13] DO-178C Software Considerations in Airborne Systems and Equipment Certification.

RTCA, 2011. Available on www.rtca.org

[14] E. Tsang, Foundations of Constraint Satisfaction. London and San Diego: Academic

Press, 1993. ISBN 0-12-701610-4

[15] Benhamou F., Goualard F., Granvilliers L., Puget J.F., Revising Hull and Box

consistency,proc of 16th International Conference on Logic Programming, 1993

https://doi.org/10.2514/6.2010-9263
https://doi.org/10.2514/6.2010-9264
https://doi.org/10.1115/1.4007764
http://www.depslink.com/

