
 

 

Résumé  – Dans l'aéronautique, le respect des exigences de sûreté de fonctionnement est le facteur déterminant  pour la 

définition des architectures de systèmes. A l’avenir, les architectes systèmes devront s’aider d’outils d’assistance à la 

génération d’architectures correctes par construction. Dans ce contexte, nous nous sommes intéressés à la modélisation 

formelle des exigences et à la résolution informatique de ces modèles formels pour trouver des architectures admissibles. 

Dans ce papier, nous proposons une approche et un ensemble d'outils pour au moins vérifier puis synthétiser une 

architecture à sûreté de fonctionnement intégrée d'un système embarqué avion de production et de distribution de 

puissance électrique. Nous avons développé une approche à base de modèle qui utilise le langage DEPS (DEsign Problem 

Specification), un langage dédié à la modélisation et à la résolution des problèmes de conception. Les résultats obtenus 

montrent qu’il est possible de modéliser des exigences complexes de sûreté de fonctionnement au niveau requis par 

l’architecte système et que leur prise en compte pendant la résolution génère des solutions correctes vis-à-vis de celles-ci. 

 

Abstract – In aeronautics, compliance with safety requirements is the main driver in the definition of system architectures. 

In the future, system architects will have to use tools to assist in the generation of correct architectures by construction. In 

this context, we are interested in formal requirements modeling and in the computer resolution of these formal models to 

find eligible architectures. In this paper, we propose an approach and a set of tools to at least verify and then synthesize a 

fail-safe architecture of an on-board aircraft electric power generation and distribution system. We have developed a 

model-based approach using the DEsign Problem Specification (DEPS) language, a language dedicated to modeling and 

solving design problems. The results obtained show that it is possible to model complex dependability requirements at the 

level required by the system architect and that taking them into account during the resolution process generates solutions 

that are correct with respect to them.  

 

Mots clés - système embarqué avion de génération et de distribution électriques, sûreté de fonctionnement, synthèse à base 

de modèle, programmation par contrainte, vérification. 

 

Keywords – on board aircraft electric power generation and distribution system, safety, model based system synthesis, 

constraint programming, verification. 

 

 

 
1 INTRODUCTION 

In this period of ecological and energy transition, several 

industrial sectors are being led to rethink their concepts to 

ensure a reduction in greenhouse gases. This is notably the 

case in the aeronautics sector, where we are talking about a 

more electric, hybrid electric or all electric aircraft. These 

concepts, concerning the systems architecture domain, aims to 

replace hydraulic and/or pneumatic systems with electrical 

systems performing the same functions. On the one side, the 

expected benefits are numerous: better power rationalization, 

weight savings, improved aircraft availability and reduced 
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maintenance costs. All three will increase the profitability of 

commercial aircraft and meet current and future environmental 

requirements. On the other side as explained in [Menu et al, 

2018] the increasing use of electrical components and 

electrical power systems gives rise to new constraints, 

particularly on the electrical power generation and distribution 

system architecture embedded in the aircraft. The replacement 

of hydraulic and pneumatic networks will result in a shift in 

reliability and safety requirements to the electrical network. 

Engineers will have to design and verify new and more 

complex architectural solutions in order to respond to these 

requirements while limiting the impact in terms of mass 

[Giraud, 2014]. 

In this paper, we do not consider the sizing of system but we 

present through a simplified use-case inspired from an 

industrial system architecture how we can take into account   

the safety requirements during the design process: 

In this paper, firstly we will present the issue, secondly our 

approach, thirdly some related work, fourthly we will present 

the use-case that is to say the embedded power generation and 

distribution system that we are studying as well as the 

associated safety requirements. 

Fifthly we will present the DEPS problem modeling language 

[Yvars and Zimmer, 2014], dedicated to the formalization of 

system synthesis problems. The modeling of the problem in 

DEPS will then be detailed. The models will be compiled and 

solved under the DEPS Studio modeling and solving 

environment associated with the DEPS language. 

Finally, some perspectives of evolution will be evoked. 

2 ISSUE 

In aeronautics, compliance with operational safety 

requirements is the main driving force behind the definition of 

system architectures. 

These system-level requirements are generally the result of 

preliminary reliability analyses that determine the failure rate 

of functions critical to operational safety. 

To ensure that failure rates are above the desired thresholds, 

system architects must implement architectures with a number 

of hardware and functional redundancies.  

In particular, these dependability requirements will lead 

architects to develop back-up functions that will replace flight-

critical functions when they fail. This is known as fail-safe 

architecture. 

These architectures are difficult to develop and verify because 

redundancy clashes with other design criteria such as weight 

and cost, which favor the sharing of components. Failure of 

components common to normal and backup functions causes 

the fail-safe nature of the architecture to be lost. In order to 

avoid the problem it is mandatory to ensure that the 

realizations of normal and backup functions are segregated 

(i.e. they have no material elements in common). 

In the following, we propose an approach and a set of tools to 

at least verify and later synthesize a fail-safe architecture of a 

power generation and distribution system. 

More precisely, we will simultaneously address the following 

problems: 

- to check that the electrical hardware architecture meets the 

the operational safety requirements with regard to the various 

failures that may occur during a flight; 

- to synthesise the software architecture needed to control the 

reconfiguration of the electrical system when a failure 

occurs. 

3 APPROACH 

We adopt a model-based systems engineering approach with 

two levels of modeling: one level for the functional 

architecture of the system and one level for the physical 

architecture. 

At the functional level, the power supply system services are 

organized in safety patterns that group together the normal and 

backup power distribution operating channels. It is at this level 

that the properties of physical segregation between channels 

will be expressed. 

At the hardware level, we find the components that make up 

the physical architecture of the system, including: AC 

generators, bus bars, contactors, AC/DC converters and 

calculators. 

We formalize the problem of verifying the conformity of the 

architecture to safety requirements as a generalized 

deployment problem (or resource allocation problem). 

Generation, Distribution, Conversion, Command and 

Supervision functions, which are part of safety patterns, must 

be deployed on generators, distribution paths, convertors and 

calculators in a way that respects the segregation constraints. 

It is important to point that these segregation constraints have 

to be expressed at the functional level even if they act at the 

hardware level. On the one hand, these segregation constraints 

are expressed on functions and channels and, on the other 

hand, we would like to have some form of genericity and 

reusability of the models. 

In the following, we detail how we use DEPS a modelling 

language with constraint to set and solve the checking and/or 

synthesis problems of fail-safe architecture. 

4 RELATED WORK 

The majority of the published work in the field of embedded 

electrical power system design focuses on solving problems by 

satisfying some functional requirements rather than 

formalizing the problem and requirements. Thus, [Giraud, 

2014] proposes an approach designed to solve the problem of 

load allocation on an aircraft electrical network. It involves 

sizing the energy sources and generating the connection paths 

between the energy sources and the loads in such a way that 

the energy demand is satisfied. The load allocation calculation 

is done using the implementation of a genetic algorithm. No 

formalization of the load allocation problem using an adapted 

description language is proposed. 

Other researchers practice design by simulation of embedded 

electrical architecture as in [Yang et al, 2015]. Here again 

there is no abstract modeling of the problem. The performance 

of a given system is evaluated by simulation. If the result is 

suitable, the architecture is accepted; if not, it is necessary to 

manually modify some parameters of the system and then 

simulate it until a satisfactory solution is found. It can take a 

long time, especially when there are multiple requirements to 

be met. On the other hand, it is possible to achieve a very fine 

level of granularity for the physical models used. 

 

From the point of view of taking into account safety 

requirements, [Menu et al, 2018] propose a two-step design 

process: the use of a graphical formalism intended to represent 

the architecture of the electrical system and a low level of 

variability reduced essentially to the range of possible values 

for the cardinality of the system components. A generation of 

the cartesian product of the candidate architectures is then 

carried out and fault trees are used to evaluate the failure 

probabilities of the different generated systems, with the 



designer having to choose the satisfactory solution. The limits 

of this work concern on the one hand the weakness of the 

expressible variability and on the other hand the evaluation of 

the solutions.  

 

However, as early as 2010, [Becz et al, 2010] and [Pinto et al, 

2010] emphasize the need for both problem modeling 

formalism at a sufficient level of abstraction and synthesis 

tools to represent and solve complex system design problems 

in embedded aeronautics. 

 

In our case, we will see that we have a typical case of formally 

representing and solving a problem of synthesis of software 

architecture for the control of the embedded electrical 

generation and distribution network in compliance with the 

safety requirements of this network. 

 

[Creff et al, 2020] point out the difficulties of using formalisms 

such as SysML (System Modeling Language), initially 

designed to represent totally defined systems to model 

problems. They propose in their work to use the Clafer [Bak et 

al, 2014] formalism associated with the Choco [Lorca et al, 

2014] constraint programming library to model and solve a 

problem of allocating calculators to embedded tasks. Clafer is 

a feature oriented modeling language [Kang et al, 1990] with 

very limited reusability capabilities. As a result, it remains a 

language dedicated to the configuration of software product 

lines. On their side, [Leserf et al, 2015] propose to add a first 

level of variability to the SysML language intended to be more 

universal. The approach is coupled with the Choco library to 

solve simple configuration problems. This work has so far 

remained at the research stage. The current limitations of these 

two approaches are the low level of variability that can be 

taken into account, the use of a solver handling essentially 

discrete constraints and a weak coupling between the 

formalism and the solver, which means that the development 

of models is carried out in case of a problem in the solver 

language and not in the Clafer or SysML language. 

All these limitations have already been pointed out by Shah 

[Shah, 2010] and [Shah et al, 2012]. We will see in this paper 

that the DEPS language (DEsign Problem Specific language) 

[Yvars and Zimmer, 2014] and its recent integrated modeling 

and solving environment DEPS Studio [Yvars and Zimmer, 

2019] are an attempt to address these limitations. 

5  PROBLEM DESCRIPTION 

5.1 System description 

The case study is an aircraft electrical Power Distribution 

System (PDS). A PDS is responsible for the distribution of 

energy from the various generators to the various on-board 

loads (Figure 1). 

From an electrical point of view, the system is composed of 

the following hardware elements: 

- Three generators (GLC1, GLC2, RAT) which provide the 

electrical power; 

- Eight bus bars (LH MAIN AC, LH ALT AC, LH MAIN DC, 

LH ESS DC, RH MAIN AC, RH ALT AC, RH MAIN DC, 

RH ESS DC) that provide electrical distribution services to the 

loads connected to them; 

- Three converters to transform alternating current into direct 

current (T1, T2, SBT); 

- Seventeen power contactors to connect and disconnect 

certain parts of the network in order to conduct or interrupt the 

transfer of power between these parts. 

 

The network topology of the power generation and distribution 

system can evolve dynamically under the effect of calculators 

that control the contactors by means of their control ports. The 

calculators and the connection between the ports and the 

contactors are not shown on Figure 1. 

Note that the system has been sized by electrical engineering 

specialists so that GLC1 or GLC2 alone can provide the 

electrical power required by all the loads. 

 

 
 

Figure 1.  Aircraft electrical generation and distribution 

architecture 

5.2 Control system description 

To ensure the connection between the generators and the bus 

bars, the contactors must be connected or disconnected. To do 

this, they are controlled by means of processing programs 

running on calculators. 

A calculator includes: 

- a power supply unit (PSU), 

- a microcontroller (C). 

A C is a kind of processing unit on which are implemented 

the programs controlling the contactors. It interfaces with the 

environment via control ports. 

It should be noted that for technological reasons the routing of 

contactor commands must respect the following property: a 

contactor can only be controlled by one and only one control 

port (P1). 

It should be noted too that a PSU may fail frequently. 

Therefore a calculator can fails just like any other hardware 

equipment. 

The role of the control system is twofold: 

- It has to distribute electrical power to the bus bars by 

establishing distribution channels; 

- It has to change the distribution channel in case of failure. 

So we will have two kinds of C programs; those controlling 

the distribution channels and those monitoring the switch from 

one channel to another. 



Distribution channels are therefore made up not only of 

contactors but also of their treatments. In addition to this we 

have to consider transition channels made up of switching 

treatments.  

5.3 Adressing safety requirements 

Each bus bar can be seen as a system distributing power 

services to loads. 

In normal operation, each bus bar of the PDS functions 

normally and distributes power via a so-called normal 

distribution channel. 

If a power service is critical for the survival of the aircraft, 

then additional channels are added to the related system in 

order to guarantee service in the event of a failure. In this case 

a bar bus system will be composed of a normal distribution 

channel, a safety distribution channel and the related transition 

channel. 

It is important to note that these safety channels are the result 

of preliminary safety studies. Therefore they are functional 

inputs of the problem we address. 

In the following we will only consider the safety channels 

defined for single failures. Other safety channels exist in the 

case of multiple faults but there are out of the scope of the 

present paper. 

In the case of single failures, the overarching requirement is as 

follows: 

(R) In the case of a single failure occurring on equipment all 

bus bars must continue to be powered after reconfiguration of 

the system. 

In this respect, it should be remembered that calculators are 

part of this equipment. Therefore calculator failures have to be 

considered. 

In our case study, R means that the height bus bar system will 

have the same safety pattern made of: a normal distribution 

channel, a safety distribution channel and a transition channel. 

To this pattern we must add the segregation constraints in 

order to avoid the hardware common points. 

In an obvious way, the normal and safety distribution channels 

have to be segregated including the programs controlling the 

distribution. 

Less obviously the normal and transition channels have to be 

segregated too. Indeed, if the program controlling the normal 

distribution and the transition program are on the same 

calculator then a calculator failure prevents switching to the 

safety distribution channel. The Figure 2 resumes the resulting 

pattern. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Example of safety pattern 

Let's take as an example the LH MAIN AC system. 

In the topology of Figure 3, the "LH MAIN AC" bus bar is 

powered by generator G1 via contactor GLC1. In the event of 

a single failure on generator G1, contactors TAC1 and TAC2 

must be activated to allow continuous power supply to the bus 

bar via generator G2. 

 

 
 

 

 
Figure 3.  Example of normal mode and simple failure 

Functionally, the LH MAIN AC system (see Figure 4) is 

composed of: 

- A channel norm: G1, GLC1 and the control program, 

- A channel safety: G2, GLC2, TAC2, TAC1 and the control 

program, 

- A transition channel: the transition program. 

 

Figure 4 shows a material deployment of LH MAIN AC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Figure 4.  LH MAIN AC generation and distribution 

functions deployment 

It should be noted that: 

- For the generation (G) and distribution (D) functions of LH 

MAIN AC the deployment is known (NORM on G1 and 

GLC1, SAFETY on G2 and GLC2, TAC2, TAC1); 
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- For the control and transition programs the calculators and 

the ports used for the deployment are not known. 

This is why in the following we put the emphasis on the 

deployment of the control and transition programs on 

calculators and on the routing between calculator control ports 

and contactors. 

5.4 Software architecture synthesis 

Thus, with a fixed electrical architecture, it remains the 

problem of determining: 

- the necessary and sufficient number of calculators, 

- how to allocate calculators to  the control and transition 

programs, 

- how to allocate the contactor commands to the calculator 

ports. 

 

This last point requires specifying the relationships existing 

between contactor commands and contactors: 

- R1: a contactor is controlled by one and only one contactor 

command of a calculator 

- R2: a contactor command of a calculator controls one and 

only one contactor 

 

All this has to be done in such a way that all safety 

requirements are met. 

Finally it is not a question here of verifying that an existing 

control architecture verifies a posteriori the dependability 

requirements imposed on the electrical architecture, but rather 

of producing a control architecture that verifies by construction 

the dependability requirements. In other words, it is about to 

use the dependability requirements to build a solution. We are 

thus faced with a synthesis problem, requiring a formal model 

of the problem to be solved as well as a solving tool adapted to 

use this formal description to generate a correct architecture by 

construction [Pinto et al, 2010]. 

6 DEPS LANGUAGE 

6.1 Paradigm 

The Design Problem Specification (DEPS) language is 

commonly referred to as a Domain Specific Language (DSL). 

The target application domain is the specification and 

resolution of engineering problems, particularly those 

encountered in product or system design: sizing, configuration, 

allocation and architecture generation. The industrial interest is 

to use a unique formalism and tooling to model and solve all 

these categories of synthesis problems [Yvars, and Zimmer, 

2021].. 

DEPS is an external (as opposed to internal or embedded) 

dedicated language. The source code is therefore independent 

of any host generalist language.  

The DEPS language can be seen as a combination of a 

software or system modeling language and a mathematical 

programming language. From the former have been borrowed 

the features of structuring and abstraction which allow to 

represent the elements and the system under study. From the 

latter were borrowed the mathematical concepts necessary to 

solve the engineer's problems: unknowns, equations and 

inequalities. 

This combination makes it possible both to represent design 

problems and to pose and then solve or optimize the systems of 

equations and inequalities that govern them [Yvars and 

Zimmer, 2019]. DEPS is supported by the non-profit 

organization DEPS Link (www.depslink.com). 

DEPS has been used on problems of robot design [Yvars and 

Zimmer, 2014], battery synthesis [Diampovesa et al, 2020] and 

embedded avionics system synthesis [Zimmer et al, 2020]. 

6.2 Main characteristics 

6.2.1 The Model 

The fundamental feature of the language is the Model. Any 

Model is defined using the keyword Model followed by its 

name and its (possibly empty) list of arguments. It contains in 

order: a declaration-definition area for Constants, a declaration 

area for Variables, a declaration-creation area for Elements and 

a definition area for Properties. The definition of a DEPS 

Model ends with the keyword End (Figure 5). 

The properties of a Model are the equations and inequalities 

that relate to the constants and variables of that Model. All the 

algebraic operators of the IEEE754 standard are available to 

build the properties. A Model therefore contains all the 

ingredients necessary to set the constraints that govern an 

instance of this Model. Some specialized constraints can also 

be set as constraints on data catalogs. Any instance of a Model 

will necessarily contain the set of constants, variables and 

Elements expressed in the Model and will necessarily have to 

verify the set of properties of the Model.. 

 

 

 

 

 

 

 
 

 

 

 
Figure 5.  DEPS model example 

As in an object language there is inheritance and composition: 

a Model can be extended and inherits constants, variables, 

elements and properties from another Model. Elements are 

instances of Models.  They are either built inside the Model 

and in this case you have to call the constructor of the 

reference model with values given to its arguments or are 

passed as arguments to a Model creating an aggregation link 

with it. In this last case, the argument elements are named in 

the list of model arguments and declared in the Elements zone, 

specifying the signature of the model to which they refer. 

Constants can also be passed as arguments to a Model, 

allowing the creation of Parametric Models. DEPS also 

supports polymorphism. 

 

Thus in Figure 5, we have a Model B that inherits (extends) 

from a Model A. Model B has two arguments: argument arg1 

which is an integer (arg1: Integer;) and argument arg2 which 

is an instance of Model C which must necessarily have two 

arguments: the first being an integer, the second being a 

CpuIndex. All this is specified by the signature of the Model C 

(arg2: C [Integer, CPuIndex] ;). Finally, Model B is 

composed of an instance of Model C called Elt1 and created 

thanks to the call C(1,2). 

Modeling a problem to be solved is therefore like as building 

DEPS Models and assembling elements in a main model 

without arguments expressed using the keyword Problem. 

6.2.2 The Quantity 

Model B(arg1, arg2) extends A 

Constants 

arg1 : Integer ; 

Variables 
CPU : CpuIndex; 

Elements 

arg2 : C[Integer, CpuIndex]; 

Elt1 : C(1, 2); 

Properties 

 

End 

 



In DEPS, both constants and variables are associated with 

types of physical or technological magnitudes called quantities 

(Quantity). They are necessary in Systems Engineering (Figure 

6). 

A Quantity has: 

- A basic type of quantity (called QuantityKind). For example, 

Real, Integer, Length; 

- A min (resp. max) bound that represents the minimum (resp. 

maximum) value that can be taken by any constant or variable 

having the defined quantity as its type; 

- A unit of the quantity. For example the meter m for a length 

and u for quantities without unit. 

 

A QuantityKind has: 

- a basic type (integer or real), 

- a min and max bound, 

- a dimension in the sense of the dimensional analysis of the 

quantity. For example L for a length or U for a dimensionless 

quantity; 

 

 

 

 

 

 

 
 

Figure 6. QuantityKind and Quantity 

6.2.3 Implementation 

The DEPS Studio integrated modeling and solving 

environment associated with the DEPS language includes 

model editing functions, project management functions based 

on a package mechanism, a compiler and a solver. 

An integration approach rather than a model transformation 

approach has been chosen. Indeed, in the case of solving a sub-

defined system synthesis problem, it will be necessary in case 

of unsatisfactory computation results to perform a model 

tuning in the DEPS language. By deliberately opting for an 

integration approach, we choose this fine-tuning process. 

The computational methods we use are taken from the work on 

the resolution of CSP [Tsang, 1993]. The solver implements 

the well-known revised HC4 (HC4Rev) propagation method 

[Benhamou et al, 1993] on equations and inequalities. We have 

extended the HC4Rev algorithm, initially designed to handle 

open real intervals, to the following three types of domains:    

integer intervals, enumerated sets of floating values and 

enumerated sets of signed integer values. 

The object-oriented architecture of the solver has been 

designed so that it can be extended to other propagation and/or 

resolution methods. 

7 MODELING THE PROBLEM IN DEPS 

We briefly present here some models extracted from the 

synthesis problem explained in the chapter 5. They concern the 

model of the LH MAIN AC system and they have been chosen 

to highlight some technical points.  

7.1 Modeling the subdefinite systems  

The LH MAIN AC system follows this model (Figure 7). We 

recognize the channels NORM, SAFETY and TRANS and the 

segregation constraints between NORM and SAFETY and 

NORM and TRANS. 

The channels NORM and SAFETY have the set of contactors 

as parameters since they act on them. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. DEPS LH MAIN AC model 

7.2 Modeling a channel 

This model of channel (Figure 8) is composed of a generation 

function, a distribution function and a control program for 

commanding contactors belonging to the set of contactors. 

 

 

 

 

 

 

 

 

 

Figure 8. DEPS channel model 

7.3 Modeling a function 

This control function (Figure 9) commands one contactor. It 

extends a processing function with a constraint in the property 

zone which expresses that the control program and the 

contactor control are on the same calculator. 

 

 

 

 

 

 

 
Figure 9. DEPS function model 

7.4 Modeling a segregation 

This model segregates two control functions (Figure 10). The 

first one commands one contactor and the second three 

contactors. The second function is composed of three logic 

subprograms each of them controlling a single contactor. 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. DEPS segregation of two control functions 

QuantityKind Integer 

 Type : integer ; 

 Min  : -maxint; 

 Max  : +maxint; 

 Dim : U ; 

End 

 

Quantity CpuIndex 

 Kind : Integer ;  

 Min  : 1 ;                   

 Max : 4 ;                    

 Unit : u ;                  

End                       

 

Model S1 () extends ThreeChannelSystem[ContactorSet] 

Constants 

Variables 

Elements 

ch1: ChS1Norm(ContSet); 

ch2: ChS1Safety(ContSet); 

ch3: TRANSChannel(); 

seg1 : SEG(ch1, ch2); 

seg2 : SEG(ch3, ch1); 

Properties 

End 

 

Model SEG(ProcF1, ProcF2) extends 

SEG[ProcFunction[ContactorSet], ProcFunction[ContactorSet]] 

Constants 

Variables 

Elements 

ProcF1 : OneContactorProcFunction[ContactorSet];  

ProcF2 :  ThreeContactorProcFunction[ContactorSet]; 

Properties 

ProcF1.L1.ProcIndex <> ProcF2.L1.ProcIndex; 

ProcF1.L1.ProcIndex <> ProcF2.L2.ProcIndex; 

ProcF1.L1.ProcIndex <> ProcF2.L3.ProcIndex; 

End 

  

Model ChS1Norm () extends GDChannel[ContactorSet] 

Constants 

Variables 

Elements 

GenF:   S1NormGenFunction(); 

DistF:   S1NormDistFunction (ContSet); 

ProcF:  S1NormProcFunction(ContSet); 

Properties 

End 

 

Model S1NormProcFunction() extends 

OneContactorProcFunction[ContactorSet] 

Constants 

Variables 

Elements 

Properties 

L1.ProcIndex = ContSet.GLC1.ProcIndex; 

End  

 



All the segregation requirements are expressed in the bar bus 

systems (Fig 7). 

 

7.5 Modeling the problem 

Finally, we create the full problem containing all the 

contactors of the electrical architecture (TheContactors), the 

eight bus bars (F1, F2, ..., F8) as well as complementary 

segregations (seg1, seg2, seg3, seg4) necessary for the 

complete expression of the problem and allowing to express 

the segregation of the NORM channels of the bus bars between 

the left and side parts of the aircraft (Fig 11). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. DEPS model of the Problem 

7.6 Solving the problem 

After a compilation step, the DEPS solver produces fail-safe 

architectures with a control system requiring at the best four 

calculators.  

The results of allocating the calculators to the contactors are 

shown in Table 1. 

The results of the allocation of the calculators to the different 

contactor control programs for the normal and safety modes of 

the bar bus systems as well as their transition management 

programs are shown in Table 2. 

 

Table 1. Routing between contactors and calculators 

Contactors Calculator Index 

GLC1 1 

ATRC1 1 

TRC1 1 

LALTC1 4 

GLC2 2 

ATRC2 2 

TRC2 2 

RALTC1 3 

RALTC 1 

RATTC 1 

TAC1 3 

TAC2 4 

LALTC2 3 

RALTC2 4 

TC1 2 

TSBC1 3 

TSBC2 3 

TC2 1 

 

 

Thus, if we remember that for the LHMAIN AC bus bar, the 

NORM channel has to control contactor GLC1 (Fig. 3), we 

read in table 2 that the control program for this contactor is 

deployed on calculator 1. In the same way, the contactors to be 

actuated for the SAFETY channel are contactors TAC1, TAC2 

and GLC2 which control programs are deployed on calculators 

3, 4 and 2. The transition program TRANS  is deployed on 

computer 3. 

The whole is coherent since we can see in table 1 that 

contactor GLC1 is routed to calculator 1 and that TAC1, TAC2 

and GLC2 are routed respectively to calculators 3, 4 and 2. 

 

Table 2. Deployment of control and transitions programs 

on calculators 

Bus bar system NORM 

calculator 

Index 

SAFETY 

calculator 

Index 

TRANS 

calculator 

Index 

LHMAIN AC 1 3, 4, 2 3 

LHMAIN DC 1, 1 4, 3, 3, 2 2 

RHMAIN AC 2 4,3,1 3 

RHMAIN DC 2, 2 3, 4, 3, 1 1 

LHALTAC 4 3, 1, 3 1 

LHESSDC 2 4, 3, 3 1 

RHALTAC 3 4, 1, 4 1 

RHESSDC 1 3, 4, 3 2 

 

8 CONCLUSION 

In this article we have shown that it is possible to capture 

safety requirements that are difficult to formalize directly 

without a suitable formal language. We used the DEPS 

language which allowed us to model the right abstractions at 

the right level to describe a sub-defined model of architecture 

software architecture for the control of embedded electrical 

generation and distribution system for aircraft on the one hand, 

and safety requirement models on the other hand. The 

deployment problem was solved by applying constraint 

satisfaction methods to the properties of the problem with 

DEPS Studio environment. The structuring features offered by 

the language facilitate the reuse of the models developed.  

 

Future work will focus on taking into account additional safety 

requirements as double faults and ultimate rescue mode and 

additional components as fault sensors. The evolution of the 

models will follow those of the DEPS language in particular 

on the possibilities of manipulation of collections of objects in 

the future versions of DEPS and DEPS studio. 
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