

Résumé – Dans l'aéronautique, le respect des exigences de sûreté de fonctionnement est le facteur déterminant pour la

définition des architectures de systèmes. A l’avenir, les architectes systèmes devront s’aider d’outils d’assistance à la

génération d’architectures correctes par construction. Dans ce contexte, nous nous sommes intéressés à la modélisation

formelle des exigences et à la résolution informatique de ces modèles formels pour trouver des architectures admissibles.

Dans ce papier, nous proposons une approche et un ensemble d'outils pour au moins vérifier puis synthétiser une

architecture à sûreté de fonctionnement intégrée d'un système embarqué avion de production et de distribution de

puissance électrique. Nous avons développé une approche à base de modèle qui utilise le langage DEPS (DEsign Problem

Specification), un langage dédié à la modélisation et à la résolution des problèmes de conception. Les résultats obtenus

montrent qu’il est possible de modéliser des exigences complexes de sûreté de fonctionnement au niveau requis par

l’architecte système et que leur prise en compte pendant la résolution génère des solutions correctes vis-à-vis de celles-ci.

Abstract – In aeronautics, compliance with safety requirements is the main driver in the definition of system architectures.

In the future, system architects will have to use tools to assist in the generation of correct architectures by construction. In

this context, we are interested in formal requirements modeling and in the computer resolution of these formal models to

find eligible architectures. In this paper, we propose an approach and a set of tools to at least verify and then synthesize a

fail-safe architecture of an on-board aircraft electric power generation and distribution system. We have developed a

model-based approach using the DEsign Problem Specification (DEPS) language, a language dedicated to modeling and

solving design problems. The results obtained show that it is possible to model complex dependability requirements at the

level required by the system architect and that taking them into account during the resolution process generates solutions

that are correct with respect to them.

Mots clés - système embarqué avion de génération et de distribution électriques, sûreté de fonctionnement, synthèse à base

de modèle, programmation par contrainte, vérification.

Keywords – on board aircraft electric power generation and distribution system, safety, model based system synthesis,

constraint programming, verification.

1 INTRODUCTION

In this period of ecological and energy transition, several

industrial sectors are being led to rethink their concepts to

ensure a reduction in greenhouse gases. This is notably the

case in the aeronautics sector, where we are talking about a

more electric, hybrid electric or all electric aircraft. These

concepts, concerning the systems architecture domain, aims to

replace hydraulic and/or pneumatic systems with electrical

systems performing the same functions. On the one side, the

expected benefits are numerous: better power rationalization,

weight savings, improved aircraft availability and reduced

Synthesis of software architecture for the control of

embedded electrical generation and distribution

system for aircraft under safety constraints:

The case of simple failures

LAURENT ZIMMER
1
, PIERRE-ALAIN YVARS

2

1
 DASSAULT AVIATION

78, Quai Marcel Dassault, 92252 Saint Cloud, France
laurent.zimmer@dassault-aviation.com

2
 InstitutSupérieur de Mécanique de Paris (SupMeca)

Laboratoire QUARTZ

3 rue Fernand Hainaut, 93407 Saint Ouen Cedex, France

pierre-alain.yvars@supmeca.fr

maintenance costs. All three will increase the profitability of

commercial aircraft and meet current and future environmental

requirements. On the other side as explained in [Menu et al,

2018] the increasing use of electrical components and

electrical power systems gives rise to new constraints,

particularly on the electrical power generation and distribution

system architecture embedded in the aircraft. The replacement

of hydraulic and pneumatic networks will result in a shift in

reliability and safety requirements to the electrical network.

Engineers will have to design and verify new and more

complex architectural solutions in order to respond to these

requirements while limiting the impact in terms of mass

[Giraud, 2014].

In this paper, we do not consider the sizing of system but we

present through a simplified use-case inspired from an

industrial system architecture how we can take into account

the safety requirements during the design process:

In this paper, firstly we will present the issue, secondly our

approach, thirdly some related work, fourthly we will present

the use-case that is to say the embedded power generation and

distribution system that we are studying as well as the

associated safety requirements.

Fifthly we will present the DEPS problem modeling language

[Yvars and Zimmer, 2014], dedicated to the formalization of

system synthesis problems. The modeling of the problem in

DEPS will then be detailed. The models will be compiled and

solved under the DEPS Studio modeling and solving

environment associated with the DEPS language.

Finally, some perspectives of evolution will be evoked.

2 ISSUE

In aeronautics, compliance with operational safety

requirements is the main driving force behind the definition of

system architectures.

These system-level requirements are generally the result of

preliminary reliability analyses that determine the failure rate

of functions critical to operational safety.

To ensure that failure rates are above the desired thresholds,

system architects must implement architectures with a number

of hardware and functional redundancies.

In particular, these dependability requirements will lead

architects to develop back-up functions that will replace flight-

critical functions when they fail. This is known as fail-safe

architecture.

These architectures are difficult to develop and verify because

redundancy clashes with other design criteria such as weight

and cost, which favor the sharing of components. Failure of

components common to normal and backup functions causes

the fail-safe nature of the architecture to be lost. In order to

avoid the problem it is mandatory to ensure that the

realizations of normal and backup functions are segregated

(i.e. they have no material elements in common).

In the following, we propose an approach and a set of tools to

at least verify and later synthesize a fail-safe architecture of a

power generation and distribution system.

More precisely, we will simultaneously address the following

problems:

- to check that the electrical hardware architecture meets the

the operational safety requirements with regard to the various

failures that may occur during a flight;

- to synthesise the software architecture needed to control the

reconfiguration of the electrical system when a failure

occurs.

3 APPROACH

We adopt a model-based systems engineering approach with

two levels of modeling: one level for the functional

architecture of the system and one level for the physical

architecture.

At the functional level, the power supply system services are

organized in safety patterns that group together the normal and

backup power distribution operating channels. It is at this level

that the properties of physical segregation between channels

will be expressed.

At the hardware level, we find the components that make up

the physical architecture of the system, including: AC

generators, bus bars, contactors, AC/DC converters and

calculators.

We formalize the problem of verifying the conformity of the

architecture to safety requirements as a generalized

deployment problem (or resource allocation problem).

Generation, Distribution, Conversion, Command and

Supervision functions, which are part of safety patterns, must

be deployed on generators, distribution paths, convertors and

calculators in a way that respects the segregation constraints.

It is important to point that these segregation constraints have

to be expressed at the functional level even if they act at the

hardware level. On the one hand, these segregation constraints

are expressed on functions and channels and, on the other

hand, we would like to have some form of genericity and

reusability of the models.

In the following, we detail how we use DEPS a modelling

language with constraint to set and solve the checking and/or

synthesis problems of fail-safe architecture.

4 RELATED WORK

The majority of the published work in the field of embedded

electrical power system design focuses on solving problems by

satisfying some functional requirements rather than

formalizing the problem and requirements. Thus, [Giraud,

2014] proposes an approach designed to solve the problem of

load allocation on an aircraft electrical network. It involves

sizing the energy sources and generating the connection paths

between the energy sources and the loads in such a way that

the energy demand is satisfied. The load allocation calculation

is done using the implementation of a genetic algorithm. No

formalization of the load allocation problem using an adapted

description language is proposed.

Other researchers practice design by simulation of embedded

electrical architecture as in [Yang et al, 2015]. Here again

there is no abstract modeling of the problem. The performance

of a given system is evaluated by simulation. If the result is

suitable, the architecture is accepted; if not, it is necessary to

manually modify some parameters of the system and then

simulate it until a satisfactory solution is found. It can take a

long time, especially when there are multiple requirements to

be met. On the other hand, it is possible to achieve a very fine

level of granularity for the physical models used.

From the point of view of taking into account safety

requirements, [Menu et al, 2018] propose a two-step design

process: the use of a graphical formalism intended to represent

the architecture of the electrical system and a low level of

variability reduced essentially to the range of possible values

for the cardinality of the system components. A generation of

the cartesian product of the candidate architectures is then

carried out and fault trees are used to evaluate the failure

probabilities of the different generated systems, with the

designer having to choose the satisfactory solution. The limits

of this work concern on the one hand the weakness of the

expressible variability and on the other hand the evaluation of

the solutions.

However, as early as 2010, [Becz et al, 2010] and [Pinto et al,

2010] emphasize the need for both problem modeling

formalism at a sufficient level of abstraction and synthesis

tools to represent and solve complex system design problems

in embedded aeronautics.

In our case, we will see that we have a typical case of formally

representing and solving a problem of synthesis of software

architecture for the control of the embedded electrical

generation and distribution network in compliance with the

safety requirements of this network.

[Creff et al, 2020] point out the difficulties of using formalisms

such as SysML (System Modeling Language), initially

designed to represent totally defined systems to model

problems. They propose in their work to use the Clafer [Bak et

al, 2014] formalism associated with the Choco [Lorca et al,

2014] constraint programming library to model and solve a

problem of allocating calculators to embedded tasks. Clafer is

a feature oriented modeling language [Kang et al, 1990] with

very limited reusability capabilities. As a result, it remains a

language dedicated to the configuration of software product

lines. On their side, [Leserf et al, 2015] propose to add a first

level of variability to the SysML language intended to be more

universal. The approach is coupled with the Choco library to

solve simple configuration problems. This work has so far

remained at the research stage. The current limitations of these

two approaches are the low level of variability that can be

taken into account, the use of a solver handling essentially

discrete constraints and a weak coupling between the

formalism and the solver, which means that the development

of models is carried out in case of a problem in the solver

language and not in the Clafer or SysML language.

All these limitations have already been pointed out by Shah

[Shah, 2010] and [Shah et al, 2012]. We will see in this paper

that the DEPS language (DEsign Problem Specific language)

[Yvars and Zimmer, 2014] and its recent integrated modeling

and solving environment DEPS Studio [Yvars and Zimmer,

2019] are an attempt to address these limitations.

5 PROBLEM DESCRIPTION

5.1 System description

The case study is an aircraft electrical Power Distribution

System (PDS). A PDS is responsible for the distribution of

energy from the various generators to the various on-board

loads (Figure 1).

From an electrical point of view, the system is composed of

the following hardware elements:

- Three generators (GLC1, GLC2, RAT) which provide the

electrical power;

- Eight bus bars (LH MAIN AC, LH ALT AC, LH MAIN DC,

LH ESS DC, RH MAIN AC, RH ALT AC, RH MAIN DC,

RH ESS DC) that provide electrical distribution services to the

loads connected to them;

- Three converters to transform alternating current into direct

current (T1, T2, SBT);

- Seventeen power contactors to connect and disconnect

certain parts of the network in order to conduct or interrupt the

transfer of power between these parts.

The network topology of the power generation and distribution

system can evolve dynamically under the effect of calculators

that control the contactors by means of their control ports. The

calculators and the connection between the ports and the

contactors are not shown on Figure 1.

Note that the system has been sized by electrical engineering

specialists so that GLC1 or GLC2 alone can provide the

electrical power required by all the loads.

Figure 1. Aircraft electrical generation and distribution

architecture

5.2 Control system description

To ensure the connection between the generators and the bus

bars, the contactors must be connected or disconnected. To do

this, they are controlled by means of processing programs

running on calculators.

A calculator includes:

- a power supply unit (PSU),

- a microcontroller (C).

A C is a kind of processing unit on which are implemented

the programs controlling the contactors. It interfaces with the

environment via control ports.

It should be noted that for technological reasons the routing of

contactor commands must respect the following property: a

contactor can only be controlled by one and only one control

port (P1).

It should be noted too that a PSU may fail frequently.

Therefore a calculator can fails just like any other hardware

equipment.

The role of the control system is twofold:

- It has to distribute electrical power to the bus bars by

establishing distribution channels;

- It has to change the distribution channel in case of failure.

So we will have two kinds of C programs; those controlling

the distribution channels and those monitoring the switch from

one channel to another.

Distribution channels are therefore made up not only of

contactors but also of their treatments. In addition to this we

have to consider transition channels made up of switching

treatments.

5.3 Adressing safety requirements

Each bus bar can be seen as a system distributing power

services to loads.

In normal operation, each bus bar of the PDS functions

normally and distributes power via a so-called normal

distribution channel.

If a power service is critical for the survival of the aircraft,

then additional channels are added to the related system in

order to guarantee service in the event of a failure. In this case

a bar bus system will be composed of a normal distribution

channel, a safety distribution channel and the related transition

channel.

It is important to note that these safety channels are the result

of preliminary safety studies. Therefore they are functional

inputs of the problem we address.

In the following we will only consider the safety channels

defined for single failures. Other safety channels exist in the

case of multiple faults but there are out of the scope of the

present paper.

In the case of single failures, the overarching requirement is as

follows:

(R) In the case of a single failure occurring on equipment all

bus bars must continue to be powered after reconfiguration of

the system.

In this respect, it should be remembered that calculators are

part of this equipment. Therefore calculator failures have to be

considered.

In our case study, R means that the height bus bar system will

have the same safety pattern made of: a normal distribution

channel, a safety distribution channel and a transition channel.

To this pattern we must add the segregation constraints in

order to avoid the hardware common points.

In an obvious way, the normal and safety distribution channels

have to be segregated including the programs controlling the

distribution.

Less obviously the normal and transition channels have to be

segregated too. Indeed, if the program controlling the normal

distribution and the transition program are on the same

calculator then a calculator failure prevents switching to the

safety distribution channel. The Figure 2 resumes the resulting

pattern.

Figure 2. Example of safety pattern

Let's take as an example the LH MAIN AC system.

In the topology of Figure 3, the "LH MAIN AC" bus bar is

powered by generator G1 via contactor GLC1. In the event of

a single failure on generator G1, contactors TAC1 and TAC2

must be activated to allow continuous power supply to the bus

bar via generator G2.

Figure 3. Example of normal mode and simple failure

Functionally, the LH MAIN AC system (see Figure 4) is

composed of:

- A channel norm: G1, GLC1 and the control program,

- A channel safety: G2, GLC2, TAC2, TAC1 and the control

program,

- A transition channel: the transition program.

Figure 4 shows a material deployment of LH MAIN AC.

Figure 4. LH MAIN AC generation and distribution

functions deployment

It should be noted that:

- For the generation (G) and distribution (D) functions of LH

MAIN AC the deployment is known (NORM on G1 and

GLC1, SAFETY on G2 and GLC2, TAC2, TAC1);

G D CP

G D CP

Normal Distribution Channel

Safety Distribution Channel

TP

Transition Channel

SEG(NORM, SAFETY) +

SEG(NORM, TRANS) +

power

G: generation function CP: control program
D: distribution function TP: transition program

G D CP

service LH MAIN AC G D CP

LH MAIN AC NORM

LH MAIN AC SAFETY

LH MAIN AC

T

LH MAIN AC TRANS

SEG(NORM, SAFETY) +

SEG(NORM, TRANS) +

C1 C2 C3

- For the control and transition programs the calculators and

the ports used for the deployment are not known.

This is why in the following we put the emphasis on the

deployment of the control and transition programs on

calculators and on the routing between calculator control ports

and contactors.

5.4 Software architecture synthesis

Thus, with a fixed electrical architecture, it remains the

problem of determining:

- the necessary and sufficient number of calculators,

- how to allocate calculators to the control and transition

programs,

- how to allocate the contactor commands to the calculator

ports.

This last point requires specifying the relationships existing

between contactor commands and contactors:

- R1: a contactor is controlled by one and only one contactor

command of a calculator

- R2: a contactor command of a calculator controls one and

only one contactor

All this has to be done in such a way that all safety

requirements are met.

Finally it is not a question here of verifying that an existing

control architecture verifies a posteriori the dependability

requirements imposed on the electrical architecture, but rather

of producing a control architecture that verifies by construction

the dependability requirements. In other words, it is about to

use the dependability requirements to build a solution. We are

thus faced with a synthesis problem, requiring a formal model

of the problem to be solved as well as a solving tool adapted to

use this formal description to generate a correct architecture by

construction [Pinto et al, 2010].

6 DEPS LANGUAGE

6.1 Paradigm

The Design Problem Specification (DEPS) language is

commonly referred to as a Domain Specific Language (DSL).

The target application domain is the specification and

resolution of engineering problems, particularly those

encountered in product or system design: sizing, configuration,

allocation and architecture generation. The industrial interest is

to use a unique formalism and tooling to model and solve all

these categories of synthesis problems [Yvars, and Zimmer,

2021]..

DEPS is an external (as opposed to internal or embedded)

dedicated language. The source code is therefore independent

of any host generalist language.

The DEPS language can be seen as a combination of a

software or system modeling language and a mathematical

programming language. From the former have been borrowed

the features of structuring and abstraction which allow to

represent the elements and the system under study. From the

latter were borrowed the mathematical concepts necessary to

solve the engineer's problems: unknowns, equations and

inequalities.

This combination makes it possible both to represent design

problems and to pose and then solve or optimize the systems of

equations and inequalities that govern them [Yvars and

Zimmer, 2019]. DEPS is supported by the non-profit

organization DEPS Link (www.depslink.com).

DEPS has been used on problems of robot design [Yvars and

Zimmer, 2014], battery synthesis [Diampovesa et al, 2020] and

embedded avionics system synthesis [Zimmer et al, 2020].

6.2 Main characteristics

6.2.1 The Model

The fundamental feature of the language is the Model. Any

Model is defined using the keyword Model followed by its

name and its (possibly empty) list of arguments. It contains in

order: a declaration-definition area for Constants, a declaration

area for Variables, a declaration-creation area for Elements and

a definition area for Properties. The definition of a DEPS

Model ends with the keyword End (Figure 5).

The properties of a Model are the equations and inequalities

that relate to the constants and variables of that Model. All the

algebraic operators of the IEEE754 standard are available to

build the properties. A Model therefore contains all the

ingredients necessary to set the constraints that govern an

instance of this Model. Some specialized constraints can also

be set as constraints on data catalogs. Any instance of a Model

will necessarily contain the set of constants, variables and

Elements expressed in the Model and will necessarily have to

verify the set of properties of the Model..

Figure 5. DEPS model example

As in an object language there is inheritance and composition:

a Model can be extended and inherits constants, variables,

elements and properties from another Model. Elements are

instances of Models. They are either built inside the Model

and in this case you have to call the constructor of the

reference model with values given to its arguments or are

passed as arguments to a Model creating an aggregation link

with it. In this last case, the argument elements are named in

the list of model arguments and declared in the Elements zone,

specifying the signature of the model to which they refer.

Constants can also be passed as arguments to a Model,

allowing the creation of Parametric Models. DEPS also

supports polymorphism.

Thus in Figure 5, we have a Model B that inherits (extends)

from a Model A. Model B has two arguments: argument arg1

which is an integer (arg1: Integer;) and argument arg2 which

is an instance of Model C which must necessarily have two

arguments: the first being an integer, the second being a

CpuIndex. All this is specified by the signature of the Model C

(arg2: C [Integer, CPuIndex] ;). Finally, Model B is

composed of an instance of Model C called Elt1 and created

thanks to the call C(1,2).

Modeling a problem to be solved is therefore like as building

DEPS Models and assembling elements in a main model

without arguments expressed using the keyword Problem.

6.2.2 The Quantity

Model B(arg1, arg2) extends A

Constants

arg1 : Integer ;

Variables
CPU : CpuIndex;

Elements

arg2 : C[Integer, CpuIndex];

Elt1 : C(1, 2);

Properties

End

In DEPS, both constants and variables are associated with

types of physical or technological magnitudes called quantities

(Quantity). They are necessary in Systems Engineering (Figure

6).

A Quantity has:

- A basic type of quantity (called QuantityKind). For example,

Real, Integer, Length;

- A min (resp. max) bound that represents the minimum (resp.

maximum) value that can be taken by any constant or variable

having the defined quantity as its type;

- A unit of the quantity. For example the meter m for a length

and u for quantities without unit.

A QuantityKind has:

- a basic type (integer or real),

- a min and max bound,

- a dimension in the sense of the dimensional analysis of the

quantity. For example L for a length or U for a dimensionless

quantity;

Figure 6. QuantityKind and Quantity

6.2.3 Implementation

The DEPS Studio integrated modeling and solving

environment associated with the DEPS language includes

model editing functions, project management functions based

on a package mechanism, a compiler and a solver.

An integration approach rather than a model transformation

approach has been chosen. Indeed, in the case of solving a sub-

defined system synthesis problem, it will be necessary in case

of unsatisfactory computation results to perform a model

tuning in the DEPS language. By deliberately opting for an

integration approach, we choose this fine-tuning process.

The computational methods we use are taken from the work on

the resolution of CSP [Tsang, 1993]. The solver implements

the well-known revised HC4 (HC4Rev) propagation method

[Benhamou et al, 1993] on equations and inequalities. We have

extended the HC4Rev algorithm, initially designed to handle

open real intervals, to the following three types of domains:

integer intervals, enumerated sets of floating values and

enumerated sets of signed integer values.

The object-oriented architecture of the solver has been

designed so that it can be extended to other propagation and/or

resolution methods.

7 MODELING THE PROBLEM IN DEPS

We briefly present here some models extracted from the

synthesis problem explained in the chapter 5. They concern the

model of the LH MAIN AC system and they have been chosen

to highlight some technical points.

7.1 Modeling the subdefinite systems

The LH MAIN AC system follows this model (Figure 7). We

recognize the channels NORM, SAFETY and TRANS and the

segregation constraints between NORM and SAFETY and

NORM and TRANS.

The channels NORM and SAFETY have the set of contactors

as parameters since they act on them.

Figure 7. DEPS LH MAIN AC model

7.2 Modeling a channel

This model of channel (Figure 8) is composed of a generation

function, a distribution function and a control program for

commanding contactors belonging to the set of contactors.

Figure 8. DEPS channel model

7.3 Modeling a function

This control function (Figure 9) commands one contactor. It

extends a processing function with a constraint in the property

zone which expresses that the control program and the

contactor control are on the same calculator.

Figure 9. DEPS function model

7.4 Modeling a segregation

This model segregates two control functions (Figure 10). The

first one commands one contactor and the second three

contactors. The second function is composed of three logic

subprograms each of them controlling a single contactor.

Figure 10. DEPS segregation of two control functions

QuantityKind Integer

 Type : integer ;

 Min : -maxint;

 Max : +maxint;

 Dim : U ;

End

Quantity CpuIndex

 Kind : Integer ;

 Min : 1 ;

 Max : 4 ;

 Unit : u ;

End

Model S1 () extends ThreeChannelSystem[ContactorSet]

Constants

Variables

Elements

ch1: ChS1Norm(ContSet);

ch2: ChS1Safety(ContSet);

ch3: TRANSChannel();

seg1 : SEG(ch1, ch2);

seg2 : SEG(ch3, ch1);

Properties

End

Model SEG(ProcF1, ProcF2) extends

SEG[ProcFunction[ContactorSet], ProcFunction[ContactorSet]]

Constants

Variables

Elements

ProcF1 : OneContactorProcFunction[ContactorSet];

ProcF2 : ThreeContactorProcFunction[ContactorSet];

Properties

ProcF1.L1.ProcIndex <> ProcF2.L1.ProcIndex;

ProcF1.L1.ProcIndex <> ProcF2.L2.ProcIndex;

ProcF1.L1.ProcIndex <> ProcF2.L3.ProcIndex;

End

Model ChS1Norm () extends GDChannel[ContactorSet]

Constants

Variables

Elements

GenF: S1NormGenFunction();

DistF: S1NormDistFunction (ContSet);

ProcF: S1NormProcFunction(ContSet);

Properties

End

Model S1NormProcFunction() extends

OneContactorProcFunction[ContactorSet]

Constants

Variables

Elements

Properties

L1.ProcIndex = ContSet.GLC1.ProcIndex;

End

All the segregation requirements are expressed in the bar bus

systems (Fig 7).

7.5 Modeling the problem

Finally, we create the full problem containing all the

contactors of the electrical architecture (TheContactors), the

eight bus bars (F1, F2, ..., F8) as well as complementary

segregations (seg1, seg2, seg3, seg4) necessary for the

complete expression of the problem and allowing to express

the segregation of the NORM channels of the bus bars between

the left and side parts of the aircraft (Fig 11).

Figure 11. DEPS model of the Problem

7.6 Solving the problem

After a compilation step, the DEPS solver produces fail-safe

architectures with a control system requiring at the best four

calculators.

The results of allocating the calculators to the contactors are

shown in Table 1.

The results of the allocation of the calculators to the different

contactor control programs for the normal and safety modes of

the bar bus systems as well as their transition management

programs are shown in Table 2.

Table 1. Routing between contactors and calculators

Contactors Calculator Index

GLC1 1

ATRC1 1

TRC1 1

LALTC1 4

GLC2 2

ATRC2 2

TRC2 2

RALTC1 3

RALTC 1

RATTC 1

TAC1 3

TAC2 4

LALTC2 3

RALTC2 4

TC1 2

TSBC1 3

TSBC2 3

TC2 1

Thus, if we remember that for the LHMAIN AC bus bar, the

NORM channel has to control contactor GLC1 (Fig. 3), we

read in table 2 that the control program for this contactor is

deployed on calculator 1. In the same way, the contactors to be

actuated for the SAFETY channel are contactors TAC1, TAC2

and GLC2 which control programs are deployed on calculators

3, 4 and 2. The transition program TRANS is deployed on

computer 3.

The whole is coherent since we can see in table 1 that

contactor GLC1 is routed to calculator 1 and that TAC1, TAC2

and GLC2 are routed respectively to calculators 3, 4 and 2.

Table 2. Deployment of control and transitions programs

on calculators

Bus bar system NORM

calculator

Index

SAFETY

calculator

Index

TRANS

calculator

Index

LHMAIN AC 1 3, 4, 2 3

LHMAIN DC 1, 1 4, 3, 3, 2 2

RHMAIN AC 2 4,3,1 3

RHMAIN DC 2, 2 3, 4, 3, 1 1

LHALTAC 4 3, 1, 3 1

LHESSDC 2 4, 3, 3 1

RHALTAC 3 4, 1, 4 1

RHESSDC 1 3, 4, 3 2

8 CONCLUSION

In this article we have shown that it is possible to capture

safety requirements that are difficult to formalize directly

without a suitable formal language. We used the DEPS

language which allowed us to model the right abstractions at

the right level to describe a sub-defined model of architecture

software architecture for the control of embedded electrical

generation and distribution system for aircraft on the one hand,

and safety requirement models on the other hand. The

deployment problem was solved by applying constraint

satisfaction methods to the properties of the problem with

DEPS Studio environment. The structuring features offered by

the language facilitate the reuse of the models developed.

Future work will focus on taking into account additional safety

requirements as double faults and ultimate rescue mode and

additional components as fault sensors. The evolution of the

models will follow those of the DEPS language in particular

on the possibilities of manipulation of collections of objects in

the future versions of DEPS and DEPS studio.

9 REFRENCES

Giraud, X. (2014). Méthodes et outils pour la conception
optimale des réseaux de distribution d’électricité dans
les aéronefs. Phd Thesis INSA Toulouse.

Yang Z, Qu J &Shi X (2015). Modeling and Simulation of
Power Distribution System in More Electric Aircraft.
Journal of Electrical and Computer Engineering.

Menu, J., Nicolai, M., & Zeller, M. (2018.). Designing
Fail-Safe Architectures for Aircraft Electrical Power
Systems. Proc of AIAA/IEEE Electric Aircraft
Technologies Symposium.

Becz, S., Pinto, A., Zeidner, L. E., Banaszuk, A., Khire,
R., & Reeve, H. M (2010). Design System for
Managing Complexity in Aerospace Systems. 13

th

Problem FailSafeVerification

Constants

Variables

Elements

 TheContactors: ContactorSet();

 F1: S1(TheContactors); F2: S1(TheContactors);

 F3: S1(TheContactors); F4: S1(TheContactors);

 F5: S1(TheContactors); F6: S1(TheContactors);

 F7: S1(TheContactors); F8: S1(TheContactors);

 seg1: SEG(F1.ch1, F3.ch1);

 seg2: SEG(F2.ch1, F4.ch1);

 seg3: SEG(F5.ch1, F7.ch1);

 seg4: SEG(F6.ch1, F8.ch1);

Properties

End

https://www.semanticscholar.org/author/Zhangang-Yang/2351425
https://www.semanticscholar.org/author/Junchao-Qu/2397236
https://www.semanticscholar.org/author/Xudong-Shi/46692675

AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference.

Pinto A., Becz S. & Reeve H.M (2010). Correct-by-
construction design of aircraft electric power systems.
Proc of AIAA Aviation Technology, Integration, and
Operations Conference.

Creff S, Le Noir J, Lenormand E & Madelénat S. (2020).
Towards Facilities for Modeling and Synthesis of
Architectures for Resource Allocation Problem in
Systems Engineering. Proc of 24

th
 Systems and

Software Product Line Conference. Montreal.
Bąk K., Diskin Z., Antkiewicz M., Czarnecki K. &

Wąsowski A. Clafer: Unifying class and feature
modeling. Software and Systems Modeling, 2014.

Lorca X., Prud’homme C. & Fages J-G (2014). Choco3
Documentation. TASC, INRIA Rennes, LINA CNRS
UMR 6241, COSLING S.A.S.

Kang, K.C., Cohen S.G., Hess J.A., Novak, W.E. &
Peterson, A.S. (1990). Feature-oriented domain
analysis (FODA) feasibility study. Technical Report
CMU/SEI-90-TR-021, SEI, Carnegie Mellon
University.

Leserf P., Saqui-Sannes P.,Hugues J. & Chaaban K.
(2015). SysML Modeling For Embedded Systems
Design Optimization: A Case Study. Proc of 3

rd

International Conference on Model-Driven
Engineering and Software Development
(MODELSWARD).

Shah A.A. (2010). Combining mathematical
programming and SysMl for component sizing as
applied to hydraulic systems. Master Thesis, Georgia
Institute Of Technology.

Shah A.A., Paredis C.J.J., Burkhart R. & Schaefer D.
(2012). Combining Mathematical Programming and
SysML for automated Component Sizing of Hydraulic
Systems. Journal of Computing and Information
Science in Engineering (JCISE).

Yvars, P.-A. & Zimmer, L. (2014). DEPS Un langage
pour la spécification de problèmes de conception de
Systèmes. Proc of the 10th International Conference
on Modeling, Optimization & SIMulation (MOSIM).
Nancy.

Yvars, P.-A. & Zimmer, L. (2019). DEPS Studio : Un
environnement intégré de modélisation et de
résolution de problèmes de conception de systèmes.
Proc of 8

ème
 Conférence en ingénierie du logiciel

(CIEL) Toulouse.
Yvars, P-A & Zimmer, L (2021). Integration of constraint

programming and model based approach for design
synthesis. Proc of IEEE Systems Conference
SYSCON 2021, Vancouver.

Diampovesa S, Hubert A & Yvars P-A
(2020).Modélisation d’un problème de conception en
vue de réutilisabilité. Exemple d’une batterie Li-ion.
Proc of Symposium de Génie Electrique (SGE),
Nantes.

Zimmer L, Yvars P-A & Lafaye M (2020). Models of
requirements for avionics architecture synthesis:
safety, capacity and security. Proc of the 11

th

Complex System Design and Management (CSDM)
conference.

Tsang E (1993). Foundations of Constraint Satisfaction.
London and San Diego: Academic Press.

Benhamou F., Goualard F., Granvilliers L. & Puget J.F.
(1993). Revising Hull and Box consistency. 16th
International Conference on Logic Programming.

