Software and Systems Modeling
https://doi.org/10.1007/s10270-023-01129-x

REGULAR PAPER q

Check for
updates

DEPS: a model- and property-based language for system synthesis
problems

Pierre-Alain Yvars' - Laurent Zimmer?

Received: 7 November 2022 / Revised: 1 September 2023 / Accepted: 5 September 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract

DEPS (design problem specification) is a new modeling language designed to pose and solve system design problems.
DEPS addresses problems of sizing, configuration, resource allocation and of architecture generation for systems. Unlike
system modeling languages, which are dedicated to the representation of a defined system for evaluation or analysis, we
propose a problem modeling language for representing the design problem with a view to its automatic resolution. Compared
with other declarative problem modeling languages, DEPS is a declarative structured and property-based language that
combines structural modeling features specific to object-oriented languages with problem specification features from constraint
programming. The mathematical nature of the problems is described by formal properties encapsulated in models organized
according to the architecture of the studied system. The main features of the language are presented in details and are
illustrated with examples in different domains. An integrated modeling and solving environment called DEPS Studio allows
the designer to express its models in DEPS, to compile the models and to compute automatically the solutions. The validation
of the approach is done through two case studies. Finally, we will conclude with the studies and developments in progress
which will be integrated into the next version of DEPS Studio.

Keywords Model-based system synthesis - Specification - Design problem modeling language - Problem solving - Constraint
programming

1 Introduction

1.1 System modeling languages and problem
modeling languages

A lot of work in the field of model-based system engineering
(MBSE) has focused on the representation of fully defined
systems in order to verify them, evaluate their performance
or simulate their operation. It is therefore above all a question
of applying an analytical approach to a known system rather
than formalizing the engineering problem to be solved [1].

Communicated by Antonio Vallecillo.

B4 Pierre-Alain Yvars
pierre-alain.yvars @isae-supmeca.fr

Laurent Zimmer
laurent.zimmer @dassault-aviation.com

' QUARTZ, EA 7393, Institut Supérieur de Mécanique de Paris
(ISAE-Supméca), Saint Ouen, France

Direction de la Prospective, Dassault Aviation, Saint Cloud,
France

Published online: 19 October 2023

The development and diffusion of modeling languages
for software engineering (UML) [2] and then for system
engineering (SysML) [3] have produced languages well
adapted to the description of systems. Nevertheless they
remain solution-oriented. AADL [4] for software systems
and Modelica for physical and multi-physical systems [5] are
other examples of system description formalisms intended
for analysis and simulation.

Moreover, still in the field of solution-oriented
approaches, the development of the software tools that
support them have motivated research [6, 7] to add the
computational capabilities that are naturally missing in
basic environments. Indeed, as stated in the OMG SysML
tutorial [3]: "Computational engine is provided by appli-
cable analysis tool and not by SysML". Let us also note
some recent initiatives to introduce variability in SysML,
i.e., degrees of freedom in a system description language
coupled with a constraint programming library [1]. These
works assume that the problem description is done in UML
or in SysML and that its resolution is delegated to a suitable
solver after a model transformation. Unfortunately these

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

P.-A. Yvars, L. Zimmer

languages are made to describe systems and not to model
problems. Finally, the development of such a model requires
fast development phases which do not seem to us compatible
with the heaviness of a model transformation approach [8].

These solution-oriented approaches are necessary for the
detailed design phases of systems but insufficient for the pre-
liminary design phases in which detailed models of system
components are useless since the aim is to obtain one or more
admissible system architectures as soon as possible. This lim-
itation had been pointed out by [6] but does not seem to have
been resolved since. Shah suggests that in order to make real
progress it would be necessary to have a real object-oriented
modeling language for engineering design problems, which
would be the counterpart in the field of mathematical pro-
gramming of what Modelica [5] is in simulation.

The OCL (object constraint language), a complement to
UML despite its acronym, is not an exception to this rule.
OCL is a specification language that typically allows us to
specify invariant conditions that a UML model must check
to be correct. But even in its most recent version [9] OCL
constraints remain specifications, whose evaluation for veri-
fication purposes is not supported by the language itself and
whose resolution for sizing purposes is not considered. This
language is designed to verify that an instance of a model
conforms to its model when it is entered; it is not designed
to solve design problems.

The IEEE1220 [10] standard is representative of the
solution-oriented approach. Its chapter "system definition
stage" recommends a development process based on check-
ing and system analysis.

Conversely, the recent ISO/IEEE 42020 standard [11] rec-
ommends, in the preliminary stages of system development,
to conceptualize the system architecture by means of a rep-
resentation of the problem space and then to determine its
admissible technical solutions. It is obviously representative
of a synthesis approach and our work fully fits into it.

More precisely, we are interested in the description of
a language for modeling the design problems of technical
systems in order to solve them. The systems considered are
highly structured and can be either predominantly techno-
logical (mechanical, electrical, electronic, energetic systems,
...) or either software intensive (embedded systems) or mixed
(cyber physical systems).

The name modeling language is generally insufficient: We
model something in order to do something with what has
been modeled. In practice, we distinguish between system
modeling languages and problem modeling languages. For
the field of system design there are:

- languages used to model a system in order to manage it
during the design project, or to evaluate its performance.

- languages for modeling a design problem with a view to
its automatic resolution, i.e., to generate correct systems by
construction.

@ Springer

1.2 Research goal

Our work falls within the scope of the second category of
languages. Languages coming from mathematical program-
ming and operational research allow a flat representation of
a problem to be solved using variables, matrices, vectors,
equations and inequalities to be satisfied. They also enable
the mathematical formalization of an objective function to be
optimized. Conversely, they have no structuring and abstrac-
tion capacity which does not allow an explicit representation
of the structures inherent to the architecture design problem
modeling activity. Our research goal is to propose a language
built for modeling design problem for automatic computer
resolution. The aim of this language is to fill the gap between
current flat modeling languages and the need for sophisti-
cated representation of structured problems.

We present in this paper the DEPS language. The purpose
of DEPS is to allow the user first to formally pose a given
design problem and then, after compilation, either to solve it,
i.e., to find one or more solutions if they exist, or to optimize
it, i.e., to find the best solution(s) in relation to given criteria.
DEPS is a declarative language, based on models and prop-
erties that facilitate the modeling of system design problems.
On the one hand, the structure and abstraction features allow
to represent the architecture (the structure) of the system to be
designed while the use of properties using mathematical con-
cepts (parameters, unknowns, equations, inequalities) allows
to pose the design problems associated with it: sizing, con-
figuration, resource allocation etc.

1.3 Structure of the paper

The paper is organized as follows: Sect. 2 explains our moti-
vation. The needs are exposed in Sect. 2.1, an analysis of
the state of the art is done in Sect. 2.2, and the genesis of
the DEPS project is presented in Sect. 2.3. In Sect. 3, we
describe the language, focusing in particular on its capaci-
ties to express value domains, physical quantities, structural
aspects and properties. Section 4 focuses on language con-
stants and variables. In Sect. 5, the way of dealing with model
instances is described in detail. Section 6 describes how to
structure a problem and create relationships between model.
The various properties that can be used in the language are
described in Sect. 7. Section 8 presents the modeling and
resolution environment called DEPS Studio which, through
an implementation of the language, includes model edition,
compilation and generation of solutions. Section 9 is ded-
icated to the validation of the approach through two case
studies. Finally, Sect. 10 describes the ongoing work as well
as some perspectives of future evolution.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

DEPS: a model- and property-based language for system synthesis ...

A System

Definition é Analysisé
KO

Results

OK

Set of
Requirements

Fig. 1 Analysis approach [17]

2 Motivations

2.1 Representation and resolution needs
for model-based system synthesis

The targeted systems of the MBSE that we consider, are phys-
ical, software-intensive or mixed (embedded, mechatronics,
cyber-physics) systems.

We have seen that the classical MBSE approach is an anal-
ysis approach that does not model the problem but describes
a solution. The classical calculation process associated with
the definition model often integrates a loop for evaluating the
performance of the described system to check whether the
requirements of the specifications are met. In case of failure,
certain parameters of the described system are modified to
produce another system and so on inside a loop (cf Fig. 1).

Architecture description languages (ADL) all have in
common that they represent a system architecture produced
by the designer without any guarantee as to its eligibility.
Once modeled, the system must be evaluated according to
a point of view adopted by the language in order to verify
the requirements considered. Some languages are general-
ist, others are more specific to the architecture of the system
and/or the requirements to be verified. As described in the
INCOSE SE vision 2035 [12], ADLs allow to formalize the
result of the architecture activity. On the one hand, for several
years, work on systems engineering has led to the emergence
of the SysML [3] system modeling language based on UML
[2] and OCL [9]. Initially, a model realized in UML was
supposed to represent a computer application, i.e., a solu-
tion to a given problem which one wishes to solve by the
realization of a software. In the same way, SysML makes it
possible to describe a system architecture that can be solved
from several points of view using different diagrams. Recent
works on SysML V2 [13] propose a dedicated formal lan-
guage independent of OCL, but still position itself as the
vector of a description of architecture and requirements,
with the aim of evaluating this described architecture. On
the other hand, several domain-specific modeling languages
(DSMLs) have emerged in recent years. They depend on the
type of system to represent and the type of point of view
to be addressed. Let us mention, widely and without being
exhaustive, Modelica [5] for the representation of physical

systems with a view to simulating their dynamic behavior,
AADL [4] for describing architectures of embedded systems,
DEVS for discrete event systems [14], B and Event-b for real-
time systems [15] or S2ML [16] for modeling systems with
a view to their safety. Because of their common founding
myth “to describe a system or an architecture without hav-
ing formal assurance on the satisfaction of the requirements
of the specifications”, sometimes bidirectional bridges have
been established between these languages. In this context, the
design process is conducted in an iterative manner, possibly
using parametric optimization tools. The evaluation and/or
proof software dedicated to each formalism acts as an evalua-
tion function in the implementation of the optimization loop.
These languages are thus adapted to express an architectural
solution to be evaluated.

If we wish to work in the problem space and solve the prob-
lems encountered in system design, we will need to address
the following types of problems [17]:

- System sizing (PT1): problem for which the architecture
of the system is known but its dimensions are not (e.g., the
length of an object). Unknowns are variables that are often
continuous, sometimes discrete. Functional requirements can
be quite complex and can be expressed as linear or nonlinear
algebraic relationships between constants and variables.

- System configuration (PT2): configuration problems
involve the choice of components based on a set of compat-
ibility relationships, options, and cardinality. They are most
often discrete-dominant problems.

- Resource allocation (PT3): allocation problems involve
allocating physical resources to system functions (or deploy-
ing system functions on a set of resources) based on a set of
functional and non-functional requirements.

- Architecture generation (PT4): System architecture
problems combine the three previous problems. They are
based on a specification combining requirements and con-
straints to produce architectures that will meet the specifica-
tion. We can also talk about architecture synthesis.

To represent and solve such design problems, we will need
additional capabilities to:

1. Formalize a sub-defined or partially defined system, i.e.,
one with degrees of freedom both from the point of view
of the possible value ranges (discrete or continuous) for
unknowns but also from the point of view of optional
parts of the system structure (choices about components
...). Partially defined system modeling includes struc-
tural and behavioral modeling.

2. Formalize the functional and non-functional require-
ments on the system in terms of declarative properties.

3. Solve the problem posed by finding values for the
unknowns that are compatible with the declared prop-
erties.

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

P.-A. Yvars, L. Zimmer

A sub-defined
System
(degrees of
freedom)

Synthesis % A System Definition which
Process

conforms to requirements
A Set of
Requirements
(Properties)

Fig. 2 Model-based system synthesis approach (MBSS) [17]

As summarized in Fig. 2, this synthesis activity is com-
plementary to the usual MBSE analysis and performance
evaluation activity that [17] called MBSS for model-based
system synthesis. The MBSS approach supports the idea
of modeling the problem rather than the candidate solution
and then solving the problem by producing correct-by-
construction solutions instead of evaluating the performance
of a candidate solution.

Of course, the analysis approach (cf Fig. 1) and the MBSS
point of view (cf Fig. 2) are complementary. MBSS is suitable
for preliminary system design phases, while system modeling
and analysis tools are more suited to detailed design phases.
They enable detailed analyses and simulations that are not
possible with the algebraic tools of MBSS.

Several authors such as [6, 18-21] have shown the limits
of the “analysis approach” in the context of the activity of
representation and resolution of the problem of architecture
synthesis, showing the need for a language of description
of the problem for its resolution. Thus another approach is
possible (as illustrated in Fig. 2), in which one starts from a
sub-definite system architecture and a representation of the
requirements to be satisfied and in which, with the help of
a solution generation tool, one tries to obtain one or several
architecture descriptions correct-by-construction.

A subdefinite architecture is an architecture for which the
values of the design variables are not fixed. This approach
requires a description language of the problem to solve. In
theory, these kinds of languages are rather adapted to the
design stage of the system architecture by allowing the auto-
matic production of pre-sized and configured architectures
that necessarily meet the expressed requirements. On the
one hand, languages coming from mathematical program-
ming and operational research allow a flat representation of
a problem to be solved using variables, matrices, vectors,
equations and inequalities to be satisfied. They also enable
the mathematical formalization of an objective function to
be optimized. Let us mention the OPL [22], AMPL [23],
MiniZinc [24] and GAMS [25] languages as the main repre-
sentatives of this type of formalism.

From our point of view, they suffer from a lack of structur-
ing and abstraction capacity which does not allow an explicit
representation of the structures inherent to the architecture
design activity. On the other hand, work on the representa-
tion of software product lines has led to the emergence of
interesting problem description languages for design. Thus,

@ Springer

Clafer [19] proposes a unified model based on objects and
features and allows the user to easily express logical relation-
ships between these elements. Unfortunately for solving the
full range of design problems, these languages only address
configuration issues.

The DEPS language that is the subject of this paper is a
proposed solution to tool the MBSS approach from the point
of view of the representation of the design problem.

In addition, due to the typology of problems to be covered
we will need to work both on real and integer variables. This
point will be illustrated in Sect. 9.

2.2 Related work

The idea of combining object-oriented approaches and com-
putational methods to propose high level declarative problem
solving formalisms in engineering sciences is not new. In the
following, we describe several related works, distinguishing,
on the one hand, from the precursory works that can be linked
to the general problem of knowledge representation in artifi-
cial intelligence and, on the other hand, from the more recent
works undertaken in systems engineering and which is are
related to the development and diffusion of MBSE.

In ThingLab [26], constraints stored in the class of an
object authorize the expression of relations. One can express,
for example, that any resistance obeys Ohm’s law. However,
since ThinglLab was designed to produce animated simula-
tions, the solving methods used, which are sufficient in this
field, are ineffective for solving the systems of equations
and inequalities of engineering design problems. Moreover,
in ThinglLab, a constraint is declared in an object and its
behavior is programmed in methods of this object. This pro-
cedural character of the representation of constraints makes
itimpossible to consider ThingLab as a declarative modeling
language.

The NEMO-TEC language [27] is described as an object-
oriented extension of the Unicalc mathematical problem
solver based on the technology of sub-defined models. This
technology is comparable to interval constraint programming
methods. NEMO-TEC was essentially designed to generate
a stand-alone computing system, consisting of a compiled
model of the dependency network between the unknowns of
the problem and a user interface. This system must guide a
user in his successive design choices and validate them by
propagation. The interactive nature of the design is priori-
tized to the detriment of the resolution capacity in this work.

ONERA, in the framework of a research work in pre-
liminary aircraft design, has proposed to combine logic
programming with constraints (CLP) and object concepts
to represent and solve design problems [28, 29]. Logic pro-
gramming brings the capabilities of tree searching and logic
rules writing; its generalization to the CLP framework brings
the capabilities of formulating and solving mathematical

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

DEPS: a model- and property-based language for system synthesis ...

constraints on discrete or continuous variables. The object-
oriented concepts (classes, attributes, instances) enable to
capture the structure of the product (i.e., its decomposition
in classes) and to use it to propose configurations (i.e., differ-
ent instantiations of the product). The proposal mixes in the
object representation the procedural features of predicates
with the declarative features of clauses. Additionally all the
equations must be decomposed into binary and ternary pred-
icates. Finally although the proposed implementation makes
it possible to simulate object features in a Prolog program, the
framework still remains fundamentally that of logic program-
ming with constraints. Moreover, the scope remains limited
to the expression of configuration problems and the represen-
tation of mathematical concepts remains procedural. This is
neither a full-fledged object language nor a true declarative
mathematical modeling language.

The COB language [30] developed at about the same time
at the New York University in Buffalo also proposes to com-
bine constraints and objects by relying on the resolution
capabilities of a logic programming language with con-
straints, in this case CLP(R). But it differs significantly from
the previous development by a number of points which con-
stitute notable advances. COB is a true language. Its syntax is
formally specified by a grammar and its operational seman-
tics is validated by the development of a compiler [31]. This
compiler translates a COB program into a CLP(R) program.
Unfortunately COB is still too much influenced by CLP(R).
In addition to attributes and constraints, a class is also com-
posed of predicates and constructors. Finally COB is more
like an attempt at a general multi-paradigm programming lan-
guage (classes and objects, methods, constraints and rules)
than a specific modeling language dedicated to the engineer.

In the lineage of predicate-based languages, the Alloy
software system specification language [32] is worth men-
tioning. Alloy consists of a declarative language inspired by
the Z language and its analyzer. It associates first order logic
with relational capabilities. The Alloy Analyzer is a fully
automatic tool that finds instances of Alloy specifications (or
Alloy model), i.e., it is able to assign values to the sets and
relationships of the specification so that for each assignment
all formulas of the specification are valid. It transforms the
set of models created in Alloy into a SAT problem. Alloy is a
true language with a compiler. Unfortunately, it only handles
Boolean variables without possible resolution on real ones.

The s-COMMA [33, 34] platform is an attempt to use
UML to produce an environment combining modeling and
resolution. The idea is to use the capabilities of the meta-
modeling and model transformation tools associated with the
UML standard to build a visual and object-oriented language
for modeling constraint satisfaction problems. The platform

is composed of two main parts, a modeling tool and a pro-
jection:

e The visual modeling language combines the declarative
aspects of constraint programming with the structuring
aspects of object-oriented programming:

e The projection tool is a translator that transforms the mod-
eling of a problem described in the previous language into
a constraint programming program dedicated to a targeted
solver.

The advantages of the approach are:

e A certain independence of the problem modeling language
from the solver languages;

e A development of projection tools on new solvers facili-
tated by the use of model-driven development tools such
as KM3 (Metamodel Specification Language) or ATL
(Model Transformation Rule Description Language).

However, the model-driven development approach used in
s-COMMA presents some drawbacks. The description of the
compilation architecture presented in the user manual shows
us that it is organized in three layers (modeling, projection,
resolution) and that two transformations are needed to go
through them: the s-comma object model is first compiled
into a flat-s-comma model with a syntax closer to that of the
target resolution languages, then this flat-s-comma model
will itself be compiled into the target language of a given
solver.

This complex compilation chain decouples the problem
description model from the solution finding and poses the
fundamental question of the debugging of the model.

The Deklare [35] and KoMod [36] projects focused on
the representation of the functional and organic structures of
the products to be designed in order to enable the associated
design problems to be posed and solved using a commercially
available constraint programming library.

The objective of the CO2 (constraint-based design) project
(a Grant from the French National Research Agency) was to
develop methods and tools to solve design problems. The
project produced Constraint Explorer (CE), a problem solv-
ing software environment comprising a modeling language
and a numerical solver based on interval methods [18]. The
solving characteristics and performances of CE are relevant,
but the language lacks the object-oriented structuring fea-
tures required for system design.

Clafer [19], a recent proposal seems particularly interest-
ing. It proposes an object-based and feature-based model and
allows the user to easily express logical relationships between
these elements. A Clafer model can be transformed into an

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

P.-A. Yvars, L. Zimmer

intermediate format [20] so that it can be taken into account
by the constraint programming library Choco or by Alloy
[19]. Clafer remains for the time being oriented towards the
representation of configuration problems or software product
lines and deals essentially with discrete problems. In addi-
tion, the environment requires the use of an external solver
to solve the models.

Finally, let us mention the work around the taking into
account of uncertainty in software engineering. [21] talks
about partial models represented in the form of graphs
with alternatives and a resolution process using an external
SAT solver. However, they do not propose any formal
language. Moreover, only Boolean degrees of freedom can
be represented.

2.3 Our proposal

The current needs expressed in preliminary design, particu-
larly in the field of the generation of architecture of eligible
systems, are not covered [1, 37]. This observation led us to
start this work of specification and development of a declar-
ative language adapted to system design.

Our proposal to meet these needs is:

e A native language, declarative, structured and property
based, offering the possibility to describe an ontology of
physical quantities and enabling the representation of vari-
ables and properties in discrete and continuous domains.

e An Integrated Modeling and Solving Environment
enabling model edition, compilation and resolution within
the same integrated environment.

As partial system descriptions are naturally more fre-
quent in the upstream phases of system definition, DEPS
is a natural candidate for preliminary design even if its use
is not limited to this stage. In preliminary design, DEPS
Studio can be seen as a synthesis tool that proposes eligible
systems as opposed to analysis tools used at later stages to
verify or validate a system.

We describe the main features of the language in the
remainder of this paper.

3 DEPS fundamental features
In this section, after giving an overview of DEPS, we describe

the fundamental elements of the language, which will serve
as a basis for the rest of the paper.

@ Springer

3.1 Overview

In DEPS, a design problem is represented by a set of DEPS
models so the fundamental feature of the DEPS language is
the “Model”. Any model encapsulates in order: a set of argu-
ments, a set of constants, a set of variables, a set of elements
and a set of properties. Arguments can be either constants or
elements identifiers. Elements are instances of other models.

Figure 3 gives a representation of the DEPS meta-model
and synthesizes all the concepts that will be presented in the
rest of this paper.

3.2 Models

The fundamental feature of the DEPS language is the model.
Any model is defined using the keyword Model followed by
its name and its (possibly empty) list of arguments. It contains
in order: an area for declaration or definition of model con-
stants (keyword Constants), an area for definition of model
variables (keyword Variables), an area for declaration or def-
inition of model elements (keyword Elements) and an area
for definition of model properties (keyword Properties).
In the following, we will agree that:

e The notion of declaration refers to the description of the
type of the constant or element passed as an argument of
a model but constructed outside of it,

e The notion of definition refers to the construction of the
constant or the element inside a model.

A Model is defined according to the following syntax:

<Model> ::=
Model <ModelName>(<listOfArguments>)
<ModelOptions>
Constants <listOfConstantDeclarationOrDefinition>
Variables <listOfVariablesDefinition>
Elements <ListOfElementsDeclarationOrDefinition>
Properties <ListOf Properties>
End

With

<ModelOptions> ::=
\

abstract

extends <ModelSignature>

abstract extends <ModelSignature>

A model can be qualified as abstract (optional keyword
abstract). In this case, it cannot be instantiated. An instance

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

DEPS: a model- and property-based language for system synthesis ...

ic] 1 Unary
Global Algebraic has 2 Expression fe34——-
[/ A - ﬂ ‘3\\ Binary
1 1 » < —1 == Leaf
Table Catalog Property = =
has a —
07 . [Vanabe] Quantiykind] 1. [Tye
- s a has a
1 1’/ 1 has a
Quantity has a
Model — Prohlem hasa has a 1)
0.* -
1 / \—‘3 Domain
<> \ 1 ’ ! Constant o 1 1 Integer| [Real
is aninstance of "
~o |0
1
Element 1
Interval Enumerate
1
isa xor D\
[/
Argument Integerinterval] [Reallnterval IntegerEnumerate| |[RealEnumerate
0.*

Fig.3 A part of the meta-model of the current version of the DEPS language

of a model is called an Element. Therefore, no instance of
an abstract model can be displayed in the Elements area of a
model.

It is possible to extend models (extends keyword). This
functionality will be detailed in Sect. 6.1.

The arguments of a model can be either values, constants
or instances of other models (Elements) and nothing else.
Any constant argument of a model will have its declaration
in the Constants area of the model. Any element argument
of a model will have its declaration in the Elements area of
the model. These points will be detailed in Sect. 6.2.

3.3 Problem

The problem to be solved is expressed using the keyword
Problem. Syntactically, a problem is a Model without argu-
ments. For each system design project to be represented
in DEPS, there is one and only one Problem defined. The
problem is broken down into Elements. Each Element is an
instance of a Model. Since each Model can also be made up of
Elements, the Problem is the root of a hierarchy of Elements.

Then, a Problem is defined according to the following
syntax:

<Problem> ::=
Problem <ProblemName>
Constants <listOfConstantDeclarationOrDefinition>
Variables <listOfVariablesDefinition>
Elements <ListOfElementsDeclarationOrDefinition>
Properties <ListOf Properties>
End

3.4 Quantity kind and quantity

Data manipulated in DEPS can be:

e Integer or real values.
e Integer intervals, real intervals, integer enumerated
domains, or real enumerated domains.

If we stick to these simple types, we cannot represent the
quantities manipulated by the designers of technical systems.
Therefore, we have proposed two concepts to represent these
quantities: QuantityKind and Quantity.

Several research works have focused on the integration of
quantities in models [38]. These works are based on the def-
inition of UML stereotypes intended to represent quantities
as well as the associated operators in the form of member
functions. Several other implementation of the concept of
quantities exist: QUDV for SysML [39], the QUDT ontol-
ogy [40] from NASA and the representation of quantities in
the Modelica language too [41]. Our proposal is different on
several points:

e We make a clear distinction between the Quantity that will
carry the unit and the QuantityKind that will carry the
dimension of the quantity.

e Our approach is purely declarative and we do not use
member functions. The operations between quantities are
directly managed by the DEPS Studio environment that we

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

P.-A. Yvars, L. Zimmer

QuantityKind PotentialDifference
Type : real ;

Min :0;

Max : +maxreal ;

Dim : ML2T-3I-1;

End

QU A W N

Fig.4 QuantityKind example

have developed and that is able to do algebraic operations
guaranteed on the domains of possible values of quantities.

e We want to be able to represent both ordinal and cardinal
quantities.

e QOur aim is not to describe quantities in all their generality,
but to provide just enough information to be able to cor-
rectly type the constants and variables of the problems we
wish to represent in DEPS.

Note that a set of universal quantities and quantity kinds
of physics have been predefined in DEPS: Pressure, temper-
ature, electric current, mass, length, power, ...

The basics quantities Real and Integer are also predefined.

They are all included in a dedicated package available with
the language.

3.4.1 Quantity kind

In DEPS, both constants and variables are associated with
types of physical or technological quantities called quantities
(Quantity). They are mandatory in Systems Engineering.

A QuantityKind carries a basic type (integer or real), a min
limit, a max limit as well as the dimension in the sense of the
dimensional analysis of the quantity [42, 43]. For example
L is the dimension of a length, LT 2 is the dimension of an
acceleration where M represents a mass, L a length and T
a time. We can also define dimensionless Quantitykind as
processor indexes or other. In this case, the dimensionless
symbol u will be used.

The negative and positive infinite values for the domain
terminals are noted -maxreal and + maxreal for real and -
maxint, + maxint for integers.

A QuantityKind is defined according to the following syn-
tax:

<QuantityKind> ::=
QuantityKind <QuantityKindName>
Type : real | integer ;
Min : <ConstantExpression> | -minreal | -minint ;
Max : <ConstantExpression> | -maxreal | -maxint ;
Dim : <DimensionalExpression>;
End

Figure 4 shows a QuantityKind representing a potential
difference (PotentialDifference). A potential is therefore a

@ Springer

Quantity Voltage

Kind : PotentialDifference ;
Min : 0;

Max : +maxreal ;

Unit: V;

End

QN Ul D W N

Fig.5 Quantity example

zero (Min) or positive unbound real quantity (Max). Accord-
ing to the dimensional analysis, the dimension of an electric
potential is ML?T—3I~! where M represents a mass, L a
length, T the time, and I the electric intensity [42, 44].

3.4.2 Quantity

A Quantity is defined from a QuantityKind. The Quanti-
tyKind carries the dimension, and the Quantity carries the
unit.

More precisely, a Quantity has:

e A base quantity type (Kind). For example, Real, Integer,
Length;

e A Min (resp. Max) bound that represents the minimum
(resp. maximum) value that can be taken by any constant
or variable having the defined quantity as its type;

e A Unit of the quantity.

Let us assume that:

® D (Quantity Name) Tepresents the domain of values of the
Quantity

® D (Quantity Kind Name) T€presents the domain of values of the
QuantityKind

The definitions of the quantity has to satisfy:

D (Quantity Name) - D(Quantity Kind Name)
A Quantity is defined according to the following syntax:

<Quantity> ::=
Quantity <QuantityName>
Kind : <QuantityKindName> ;
Min : <ConstantExpression> | -minreal | -minint ;
Max : <ConstantExpression™> | -minreal | -minint ;
Unit : <UnitValue> ;
End

For example, the meter m can be the unit for a length and
the volt V can be the unit of an electrical potential or voltage.
The symbol u is used to designate quantities without a unit
(cf Fig. 5).

Separating Quantity and QuantityKind allows several
quantities to refer to the same quantitykind. The quantitykind

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

DEPS: a model- and property-based language for system synthesis ...

Table Battery
Attributes
ref: Index;
V: Voltage;
Imax : Current;
Tuples
[1, 12, 300],
[2, 12, 400],
[3, 6, 300],
[4,6,200]
End

O 0 N O Ul b W N =

Ju
o

[u—
[N

Fig.6 An example of table in DEPS

carrying the dimension and the quantity carrying the unit, it
will be possible to express the same quantity (same dimen-
sion) in several units.

Tables are tables of correspondence between values. A
table has a name, a set of typed attributes and a dataset orga-
nized in tuples. A table ends with the keyword End.

Tables are defined according to the following syntax:

<Table> ::=
Table <TableName>
Attributes
<a;> : <Quantityr>;
<a>> : <Quantity>>;

<an>: <Quantity,>;

Tuples

[<vair>, <vax>, ..., <vanr>],
[<vaiz>, <vaz>, ..., <van>],
[<vaiz>, <vazx>, ..., <van>],
[<vaip>, <vaz>, ..., <vanp>]

End

The table in Fig. 6 represents a set of tuples for the charac-
teristics of batteries. It describes for each battery referenced
by an Index the available combinations for the voltage and
the maximum intensity.

For example, the battery whose reference (ref) value is 2
will have a voltage of 12 V and a maximum delivered current
of 400A.

4 Constants and variables

As mentioned in Sects. 3.2 and 3.3, models are made up of
constants and variables. This section focuses on the descrip-
tion of these elements and their interpretation mechanisms.

4.1 Constants

A constant is a numerical quantity whose value does not vary
during the lifetime of any copy of the model in which it is
declared or defined. A defined constant is a constant local to
the model which is defined in its Constants area and whose

value is that of a local expression to the model. A declared
constant is a constant local to the model which is defined in
its Constants area and whose value is that of an expression
passed as an argument of the model. In addition, some uni-
versal constants are predefined in DEPS. Thus, Pi represents
the constant whose value is that of the transcendental number
.

When they are local to a Model, constants are defined
according to the following syntax:

<Constant> ::=
<name> : <quantity> = <value> <ConstantOption> ;

<name> : <quantity> in [<vmin> , <vmax> |

= <value> <ConstantOption> ;

\
<name> : <quantity> in { <vl>, ..., <vn>}
= <value> <ConstantOption> ;

<name> : <quantity> = <constant expression> <ConstantOption>

<name> : <quantity> in [<cexprmin> , <cexprmax> |
= <constant expression> <ConstantOption> ;

<name> : <quantity> in { <vl>, .., <vn>}
= <constant expression > <ConstantOption> ;

<ConstantOption> ::=

\
default

\
redefine
Constants values and quantities can be set by default and
can be redefined too. This point will be detailed in Sect. 6.5
When they are passed as arguments of the Model, con-
stants are declared according to the following syntax:

<Constant> ::=
<name> : <quantity>;
\
<name> : <quantity> in [<vmin>, <vmax>] ;
\
<name> : <quantity> in { <vl>,
\
<name> : <quantity> in [<cexprmin> , <cexprmax> | ;

<name> : <quantity> in { <vl>, ...

vy <vn>)

, <vn>}

Figure 7 shows some examples of definition of constants.
Note that some constants may depend on other previously
defined constants both for the definition domain and for the
value.

4.2 Variables
A variable is an unknown in the model. It is characterized

by its Quantity possibly restricted to a sub-area of possible
values. A variable must be defined in the Variables field of the

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

P.-A. Yvars, L. Zimmer

1 Constants

2 a:Real=3.5;

3 b:Realin [0, ,20]=2a"2;

4 c¢:Realin {-10.2,0.0,1.5,23} =1.5;
5 d : Real = a*b+In(c) ;

6 e:Realin[2*a, 2*a+10] =2%*a+1;

7 f :Realin { atl, at+3, at+5} = a+3;

Fig.7 examples of definition of constants

Constants

a:Real=35;

Variables

V1 : Real;

V2 : Real in [0, 100];

V3 :Realin {1.5,3.5,5.5};

V4 : Real in {at1, a+2, a+3};

V5 : Real in [abs(a)*2, abs(a)*3];

W N O U WN

Fig. 8 examples of definition of variables

model. As an unknown, its value is not defined. It is important
to point out that the variables carry the sub-defined character
of DEPS models.

Variables are defined according to the following syntax:

<Variable> ::=
<VariablePrefix> <name> : <quantity> <VariableOption> ;

<VariablePrefix> <name> : <quantity> in [<vmin>, <vmax>] <VariableOption>,

<VariablePrefix> <name> : <quantity> in { <vl>, <v2>, .., <vn>} <VariableOption> ;

<VariablePrefix> <name> : <quantity> in
[<cexprmin>, <cexprmax>] <VariableOption> ;

<VariablePrefix> ::=
\

expr

\
obj

<VariableOption> ::=

)"edeﬁne

Variables quantities can be set and can be redefined. They
can be prefixed too. These points will be detailed in Sect. 6.5.

Figure 8 shows some examples of definition of Variables.
Note that some variables may depend on previously defined
constants for the definition domain.

Let us define for example an electric dipole model (see
Fig. 9). A dipole is characterized by the current flowing
through it (/) and by the voltage at its terminals (U). The
possible values of the voltage U have been reduced to the
continuous range [0, 1000]. This model is qualified here as
abstract. It cannot be instantiated. In DEPS, model instances
are called Elements.

@ Springer

Model Dipole() abstract
Constants

Variables

U : Voltage in [0, 1000];
I : Current;

Elements

Properties

End

W NN OUl A WN

Fig.9 A dipole abstract model

5 Elements

As mentioned in Sects. 3.2 and 3.3, elements are parts of
models. This section focuses on the different ways of han-
dling elements. An Element is an instance of a model. It
can be passed as an argument to a model for implementing
aggregation relationship. It can also be defined in a model
for implementing composition relationship (see Sect. 6.2).
An Element can be defined or declared as follows:

<Element> ::=
<DefinedElement>

<DeclaredElement>

5.1 Defining an element

When they are local to a Model, Elements are defined accord-
ing to the following syntax:

<DefinedElement> ::=
<name> : <ModelName>(<listOfArgValues>) <ModelOption> ;

<ModelOption> ::=
|

redefine

< ListOfArgValues > is the list of argument values needed
to define the element. This list must be compatible with the
signature of the model < ModelName > of which the ele-
ment is an instance (cf Sect. 6.3). Moreover, models can be
redefined in a certain limit. This point will be detailed in
Sect. 6.5.

5.2 Declaring an element

When they are passed as arguments of the Model, elements
are declared according to the following syntax:

<DeclaredElement> ::=
<name> :<ModelSignature>;

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

DEPS: a model- and property-based language for system synthesis ...

1 | Model A(cl, c2)

2 Constants

3 | Variables

4 cl: Real,;

5 | c2: Integer;

6 Elements

7 | Properties

8 End

9

10 | Model B(DeclElt)

11 | Constants

12 | c¢bl : Real =3.5;

13 | cb2 : Integer = -1;

14 | Variables

15 | Elements

16 | DeclElt : A[Real, Integer];
17 | DefElt: A(Cbl, Cb2);
18 | Properties

19 | End

Fig. 10 examples of declared and defined elements

5.3 Model signature

Each Model has a signature. Signatures allow the designer
to define several models with the same name, different con-
tents as soon as their signatures are different. A signature is
declared according to the following syntax:

<ModelSignature> ::=
<ModelName> [<listofQuantitiesOrModelSignatures> |;

In Fig. 10, they are defined:

e A model A with two arguments: a real constant (c/) and
an integer constant (c2),

e a model B with one argument named DeclElt which is an
instance element of the model A. We will therefore specify
its signature A/Real, Integer] in its Elements part. Inside
the model B is also defined in the elements area an instance
of A named DefElt, created with the arguments cb/ and
cb2: A(cbl, cb2).

Then, as B has one argument which is an instance of A
which signature is A[Real, Integer], the signature of B model
is:

B[A[Real, Integer]].

6 Organization of the models

DEPS models can be combined with each other using differ-
ent relationships that we will now detail.

Model Resistor() extends Dipole[]
Constants

Variables

R : Resistance ;

Elements

Properties

U=R*;

End

W NN ONUT A WN

Fig. 11 A resistor model

Model Resistor(R) extendsDipole[]
Constants
R : Resistance ;
Variables
Elements
Properties
U=R*I;
End

O NN O U1 A W N

Fig. 12 A parameterized resistor model

6.1 Inheritance

DEPS models can simply inherit from each other (keyword
extends). This is public inheritance: constants, variables, ele-
ments and properties are thus directly inherited.

So be MExtends an extended model of a given model M,
any instance of MExtends will contain:

e The arguments ofM as well as the locally declared argu-
ments of MExtends.

e The constants defined or declared in the Constants area
of M as well as the constants defined or declared in the
Constants area of MExtends.

e The variables defined in the Variables area of M and the
variables defined in the Variables area of MExtends.

e The elements defined or declared in the Elements area of M
as well as the elements defined or declared in the Elements
area of MExtends.

e The properties expressed in the Properties area of M as
well as the properties expressed in the Properties area of
MExtends.

We thus define in Fig. 11 a first resistor model. A resistor
is a dipole with an unknown ohmic resistance (R) and subject
to Ohm’s law.

We can also define a second resistor in which the resistance
R is a declared constant whose ohmic value is passed as an
argument to the model (cf Fig. 12). In this case, the model is
parameterized.

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

P.-A. Yvars, L. Zimmer

Model Serial(D1, D2)
Constants
Variables
expr U : Voltage ;
expr I : Current ;
Elements
D1 : Dipole[];
D2 : Dipole[];
Properties
U :=DI1.U+D2.U;
DI1.I=D2.1I;
1:=DI1.I;
End

O 00 3 O Ul B W N

e
N = O

[uny
w

Fig. 13 Serial model of two dipoles

6.2 Composition and aggregation

An element can be passed as an argument to a model to
represent an aggregation and must then be declared in the
Model Elements field area. It can also be created in a model
to represent a composition and must then be defined in the
Model Elements area.

When an element is passed as an argument to a model, it
is simply declared in the Elements area of the model. It is
declared by typing it by the signature of the model to which
it refers.

To define an element, it is constructed by calling the name
of the model to which it refers followed by the list of its
effective arguments.

Thus, if in our example we wish to associate two dipoles
in series, we will define a serial link model between two
aggregated dipoles (cf Fig. 13).

6.3 Polymorphism and genericity

As previously mentioned in Sect. 5.3, each Model has a sig-
nature. Thus the signature of the Serial Model will be denoted
Serial [Dipole[], Dipole[]]. This mechanism removes ambi-
guity in case of aggregation of Models with the same name
but different signatures.

The signature of a model consists of its name followed by
the list of signatures of its arguments. If the argument is a
constant its signature is its quantity.

This notion of signature allows the overloading of mod-
els: several models can have the same name as long as their
signatures are different.

Thus if we now wish to have a resistance model in series
specifying explicitly that the first dipole of the aggregation
is a resistor of unknown Ohmic value and that the second
dipole of the aggregation is a resistor of known value we will
have to remove the ambiguity by means of the signature of
each of the resistance models (cf Fig. 14).

@ Springer

Model Serial(R1, R2)
Constants
Variables
expr U : Voltage ;
expr I : Current ;
Elements
R1 : Resistor[];
R2 : Resistor[Resistance];
Properties
U :=RI1.U+R2.U;
RII=R21I;
I:=R1.;
End

O 0 N O Ul b W

=
N o= O

[uny
w

Fig. 14 Serial model of two different types of resistors

Model Resistor(RO0, T) extends Dipole[]
Constants
RO : Resistance ;
T : Temperature;
alpha : Real = 3.91e-3;
R : Resistance = RO*(1+alpha*T);
Variables
Elements
Properties
Properties
U =R*I;
End

O© 0 N O Ul W

=
= o

[uny
nN

Fig. 15 A temperature-dependent resistor model

Thus, in Fig. 12, the model Resistor has an ohmic
resistance value as argument. Its signature is therefore Resis-
tor[Resistance]. Figure 14 shows a serial connection model
between a resistor of unknown ohmic value and a resistor
of given ohmic value. The signature of the Serial model
is therefore Serial[Resistor[], Resistor[Resistance]]. Let us
assume that we would like to model a new resistor which
depends on temperature (cf Fig. 15) and that we want to
connect with a serial connection this resistance to the two
previous one. We will create a new model that will extend
the two-resistor series model into a three-resistor model, the
third of which will be a temperature-dependent resistor (see
Fig. 16). The signature of this new Serial model is therefore
Serial[Resistor[], Resistor[Resistance], Resistor[Resistance,
Temperature]].

Thus if we wish to construct an element mSerial, instance
of the new Serial model, we will have to pass it in order:

e An argument of type instance of a two arguments
serial model inherited from Serial[Resistor[], Resis-
tor[Resistance]].

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

DEPS: a model- and property-based language for system synthesis ...

Model Serial(R3)
extendsSerial[Resistor[],Resistor[Resistance]]
Constants
Variables
expr Us : Voltage ;
Elements
R3 : Resistor[Resistance , Temperature];
Properties

Us :=R3.U+U;

R3.I=R21I;
End

O 0 N O Ul A W N

_
o

[
[N

Fig. 16 Serial model of three different resistors

Model SysElec(G)
Constants
Variables
Elements

G : VSource([] ;
R1 : Resistor() ;
R2 : Resistor(10);
S : Serial(R1, R2);
Properties

G V=SV,
G.I=S1;

End

O 0 N O Ul b W N

e
N = O

Fig. 17 Model of the electric system

e An argument of type instance of a temperature-dependent
resistor whose signature is Resistor[Resistance, Tempera-
ture].

Now let assume we want to create an electrical system con-
taining two resistors in series, one known and one unknown,
connected to a given voltage source. We will create a SysE-
lec model with a voltage source (G) as argument. This model
(see Fig. 17) will be composed of a resistor with a known
Ohmic value (10 Ohm), a resistor with an unknown Ohmic
value and a serial link between these two dipoles. R/ and R2
being instances of the Resistance Models, themselves derived
from Dipole, we can pass these resistors as an argument of
the Serial model.

6.4 Access to model elements

All the elements of a problem are organized using aggrega-
tion and compositional relationships forming a tree structure.
Access to the elements of this structure is authorized by the
use of a doted notation.

A constant, variable, or element at different levels of this
tree structure can be designated and manipulated using a path.

1 | Model A(E, b)

2 Constants

3 c: Realin[1, 10] = 3; default;
4 b : Real; default;

5 | Variables

6 | V:Integerin [0, 100];

7 Elements

8 | E: C[Real];

9 | Properties

10 | End

11

12 | Model B()

13 | extends A[C[Real], Real]

14 | Constants

15 | ¢:Realin[1, 5] = 4; redefine,
16 | b: Real in [-10, 10]; redefine;
17 | Variables

18 | V :Integer in [0, 10] ; redefine ;
19 | Elements

20 | E: C[Real, Real]; redefine;
21 | Properties

22 | End

Fig. 18 Illustration of redefinition of constants and variables

If the current I flowing through resistor R/ is to be accessed
in the model shown in Fig. 14, this is done via the path R1.1.

6.5 Constants, variables and elements redefinition

Let us assume that:

Dredef - const| var) represents the domain of values rede-
fined for a constant or a variable in the extended Model.

D _Const|var) represents the domain of values defined by
default for a constant or a variable in the basic Model.

The definitions of the redefined domains have to satisfy:

Dredef<Const\ Var) € D<Const| Var)

Then, in Fig. 18, domain and value of the ¢ constant have
been redefined, and the domain of the b constant has been
redefined. In the same way, the domain of the V variable
has been modified. It is also possible to redefine an ele-
ment (model instance) under certain conditions. Let us take
the example of a Model SysElecWithResistor extension of
a SysElec (cf. Figure 19). Initially, the first SysElec Model
consisting of two elements R/ and R2 instances of Dipole.
It is possible to extend the first SySElec model into a SyS-
ElecWithResistor model in which the elements R/ and R2
are redefined (redefine) as an instance of Resistor[] and an
instance of Resistor[Resistance]. This is possible if and only
if Resistor[] and Resistor[Resistance] are extended models
of Dipole.

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

P.-A. Yvars, L. Zimmer

1 Model SysElec(G)

2 | Constants

3 | Variables

4 Elements

5 | G:VSource[];

6 | R1: Dipole();

7 | R2: Dipole();

8 | S: Serial(R1, R2);

9 | Properties

10 | Gv=SYV; GI=S1I,

11 | End

12

13 | Model SysElecWithResistor
15 | extends SysElec[VSource]
16 | Constants

17 | Variables

18 | Elements

19 | R1: Resistor() ; redefine;
20 | R2 : Resistor(10); redefine;
21 | Properties

22 | End

Fig. 19 TIllustration of an Element redefinition

Dipole Model Dipole()

End
Model Resistor() Model Resistor(R)
extends Dipole[] extends Dipole[]

Resistor() Resistor(R)

End End

Fig.20 A very simple hierarchy for demonstration

6.6 Composition, aggregation, inheritance
and overloading

Itis possible to combine the aggregation, composition, inher-
itance and overloading capabilities of DEPS models. Con-
sider models Dipole, Resistor[] and Resistor[Resistance]
in Fig. 20. Dipole is the root model of an inheritance
tree. Indeed, Resistor[] derives from Dipole and Resis-
tor[Resistance] derives from Dipole too.

The Agreg model of Fig. 21 is an aggregation of two
instances dI, d2 declared as instances of Dipole. Because
of the inheritance between models, it is possible to instan-
tiate Agreg with as arguments an instance of Resistor[] and
an instance of Resistor[Resistance] as it is the case in the
UseAgreg model of Fig. 21. The RootComp model is com-
posed of two instances dI and d2 of Dipole. Because of the
inheritance relation, it is possible to extend RootComp into
an ExtComp model by redefiningd! and d2 as instances of
Resistor[] and Resistor[Resistance], respectively.

@ Springer

1 Model Agreg(ml,m2) 1 | Model RootComp()
2 Constants 2 | Constants

3 Variables 3 | Variables

4 Elements 4 | Elements

5 | dI : Dipole[]; 5 | dI : Dipole();

6 | d2: Dipole[]; 6 | d2 : Dipole();

7 Properties 7 | Properties

8 End 8 | End

1 Model ExtComp() 1 Model UseAgreg()
2 extends RootComp([] 2 Constants

3 Constants 3 Variables

4 Variables 4 Elements

5 Elements 5 rl : Resistor();

6 d1:Resisor(); redefine; 6 12 : Resistor(10);
7 d2:Resistor(20);redefine; | 7 al : Agreg(rl, 12);
8 | Properties 8 | Properties

9 End 9 End

Fig.21 A very simple hierarchy for demonstration

Model List(val, next)

Constants

val : Real;

Variables

Elements

(* neither ending story ... ¥)

next : List[Real, List[Real, List[Real,.....
Properties

End

O© 0 N O Ul b W N

Fig. 22 Wrong definition of self-referencing model

Moreover, this type of mechanism makes it quite easy to
have templates. Self-referencing of models is limited. Thus,
if one wishes to define a model of chained lists of reals in
DEPS, one would be tempted to proceed as in Fig. 22.

And we would be unable to express the signature of the
List Model. On the other hand, by using the inheritance mech-
anism combined with overloading, it becomes possible to
define quasi-recursive models (cf Fig. 23).

7 Properties

DEPS is a declarative and property based language. In this
way, it is possible to express within a model a set of properties
that must necessarily be satisfied by any of the instances of
this model. A property is a relationship necessarily respected
by any instance of the model that contains it. In the current
version of DEPS, properties are either algebraic relationships
between expressions (cf. Section 7.3) or relationships defined
in extension that use tables of values of variables compatible
with each other (cf. Section 7.4).

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

DEPS: a model- and property-based language for system synthesis ...

1 | Model List(val)
2 Constants

3 val : Real,;

4 | Variables

5 Elements

6 | Properties

7 End

8

9 35

10 | Model List(next) extends List[Real]
11 | Constants

12 | Variables

13 | Elements

14 | next : List[Real];
15 | Properties

16 | End

17

18 | Problem CreateList
19 | Constants

20 | Variables

21 | Elements

22 | celll : List(2.5);

23 | cell2 : List(3.5, celll);
24 | Properties

25 | End

Fig. 23 model self-referencing

7.1 Algebraic expressions

Algebraic expressions can be for integer or real values,
integer or real constants and variables of any type (con-
tinuous domain, discrete domain or enumerated domain).
Usual unary algebraic operators are available such as log-
arithmic, power, exponential, trigonometric, hyperbolic, ...
(cf Fig. 24). In DEPS, all algebraic operators are strongly
typed. Depending on their operands, they can return either
an integer value or a real value or a continuous domain or
a discrete domain or an enumeration of integer values or an
enumeration of decimal values.

In the same way, the usual arithmetic binary operators
are recognized in DEPS as well as the min and max binary
operators (cf Fig. 25).

7.2 Piecewise operators

It may be necessary in some design problems to express
piecewise functions from R to R. This is the case when a
function is defined continuously by pieces.

As anexample, the following function is a nonlinear piece-
wise function:

sin(<Expression>) sinus

cos(<Expression>) cosinus

tan (<Expression>) tangent

asin(<Expression>) arc sinus
acos(<Expression>) arc cosinus
atan(<Expression>) arc tangent

sinh(<Expression>) hyperbolic sinus
cosh(<Expression>) hyperbolic cosinus
tanh(<Expression>) hyperbolic tangent
asinh(<Expression>) hyperbolic arc sinus
acosh(<Expression>) hyperbolic arc cosinus
atanh(<Expression>) hyperbolic arc tangent
In(<Expression>) neperian logarithm
exp(<Expression>) exponential
abs(<Expression>) absolute value
sqrt(<Expression>) square root

Fig. 24 Unary expressions in DEPS

<Expression> + <Expression> addition
<Expression> - <Expression> difference
<Expression> * <Expression> multiplication
<Expression> / <Expression> division
<Expression> ~ <Expression> power

min(<Expression> , <Expression>) minimum
max(<Expression> , <Expression>) maximum

Fig. 25 Binary expressions in DEPS

y = f(x) defined on [0, 100] such that:

fx)=xifx €[0, 1]
fx)=x%ifx e [1, 10]

fx) =1 /x if x € [10, 100]

In the case where the function to represent is piecewise
nonlinear, we have the following operator:

pw(<varg >, <1} >, <expr; >, ..., <Il, >, <expr, >);

with < varg > being the name of the argument variable of the
function. For each i from 1 to n, < I; > represents the ith value
domain for < varg > and < expr; > represents the expression
of the function on < /; >. Here again, the operator returns a
continuous interval.

Then, for representing the previous piecewise function,
we will write the following property with the pw operator:

y = pw(x, [0, 1], x, [1, 10]x2, [10, 100], 1¢3/x);

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

P.-A. Yvars, L. Zimmer

Model PieceWiseExample()
Constants
Variables
X : Real;
Elements
Properties
y =pw(x, [0,1], x*2-1, [1, 1e3], In(x));
z+y=cos(X);

End

y:Real; z :Real;

O© 0 N O Ul S W N

Fig.26 an example of nonlinear piecewise function in DEPS

A
y = f(x)
0
35
D5
10
X
—p
0 10 25 50 65

Fig.27 An example of a linear piecewise function

Figure 26 illustrates the use of a piecewise operator inside
a DEPS model.

When the piecewise function is piecewise linear (see
Fig. 27), the following operators are available in DEPS:

pwl(< varg >, < TableName >);

with < varg > being the name of the argument variable of the
piecewise linear function. This operator returns a continuous
interval. < TableName > is the name of the data table in which
the pairs of values characterizing the pieces of line segments
of the function will be stored.

It is also possible to enumerate these pairs directly in the
operator as follows:

pwl(< varg >, (vargy, vimy), (vargy, vimy), ..., (vargy, vimy));
with varg; the ith value of varg and vim; the ith value of the
corresponding image of varg;.

Thus, for the piecewise function of Fig. 27 we will write
the following property with the pwl operator:

y = pwl(x, (0, 0), (10, 35), (25, 25), (50, 40), (65, 10));

A pwl operator can be posted by using a data table (cf
Fig. 28) that encapsulate the coordinates of the break points

@ Springer

Table PwlValues
Attributes
X : Real;
y : Real;
Tuples

[0, 07,

[10, 35],
[25, 25],
[50, 40],
[65, 10]
End

O© 00 N O Ul W -

=
= O

Fig.28 An example of data table

Model AlgebraicExemple()
Constants

a:Real=45;

b : Integer=75;

Variables

x :Realin[1, 10];

y:Realin {-1.5, 1.5,2.3};

z : Integer in [1, 100] ;

w : Integer in { -2, 1, 10, 200} ;
Elements

Properties

cos(x) + a2 +b"2 = In(z)*w’z;
End

O© 0 N O Ul D W N

e el
w N RO

Fig.29 Example of an equality constraint between two nonlinear alge-
braic expressions on mixed domains

as follow:

y = pwl(x, PwlValues);

7.3 Defining properties

Several properties can be expressed in DEPS. A property is
a relationship between variables. More precisely, we have in
DEPS the usual binary algebraic relations making it possi-
ble to establish relations of equality (=), difference (< >)
and inequality (<, < =, >, > =) between two algebraic
expressions. We have also the affectation relation (: =) for
allocating a name to an expression.

In order to illustrate the ability to express complex alge-
braic properties, we give in Fig. 29 an example of an equality
constraint between two nonlinear algebraic expressions on
mixed domains.

A declared or named expression (keyword expr) points to
an algebraic expression and makes it possible to reference it.

Thus, the same algebraic expression can be used at several
places in a model through its name without being rewritten.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

DEPS: a model- and property-based language for system synthesis ...

An expression is declared in the Variables zone of a model
in the same way as a variable by prefixing it with the keyword
expr.

An expr can be initialized (using the assignment operator:
=) in the Properties area of the model where it is declared or
inside the Properties area of another model via a path. Initial-
izing an expr means defining the explicit algebraic expression
to which it will point and whose value it will take. Each expr
is defined once and only once. For a given problem the expr
graph must necessarily be a direct acyclic graph (DAG).

In addition to reuse, declaring expressions avoids to arti-
ficially increase the number of unknowns of problem. This
is the case when these expressions are useful to the system
designer only for observation or for renaming purposes (cf
examples in Sect. 9).

Thus, in the Serial model in Fig. 13, we have created an
expr U initialized at the value of the sum of the voltages at
the terminals of each dipole of the serial link.

It is also possible to specify in DEPS that the value of
a variable is an objective to be minimized by using the obj
keyword. An objective is an expression whose value defined
with the affectation relation (: =) must be minimized. This
allows to express optimization problems in DEPS. A problem
expressed in DEPS must have at most one obj expression.

7.4 Properties defined in extension

It is possible to force a set of variables to take their values in
a Table and only in this Table.

To do this we have a catalog constraint with the following
syntax:

Catalog ([< vl >, <Vv2>, ..., <vn>], < TableName >);

The first argument of this constraint is the list of vari-
ables to constrain. The second argument is the name of the
constraining table.

Sometimes a data table is reused to put a catalog constraint
on a subset of the table’s columns. To do this, we have another
catalog constraint with the following syntax:

Catalog([< vl >, ..., <vn>] [<il >, .. <in>] <
TableName >);

The first argument of this constraint is the list of variables
to constrain. The second argument is the list of the column
numbers to be considered in the table. The third argument
is the name of the constraining table. This catalog property
can work on every kind of domains of variables: continuous,
discrete and enumerations.

Figure 30 illustrates the use of such a constraint in the
case where we want to create a VSource voltage generator
model consisting of generators which maximum voltage and
current characteristic values are constrained by the Battery
table.

Figure 31 and Fig. 32 represent a problem in which one

Model VSource() extends Dipole
Constants
Variables
ref : Index;
Elements

Properties
Catalog([ref, V, Imax], Battery) ;
I <= Imax;

End

Imax : Current;

O 00N O U b W N

Fig. 30 DEPS model of generator with catalog

10Q |—

Fig.31 A very simple electrical system to design

Problem ElecPb
Constants

Pmax : Power = 100 ;
Variables

obj P : Power ;
Elements

G : VSource();

S : SysElec(G);

9 Properties

10 | P:=S.G.U*S.G.I;

0N U W N =

11 | P>=10.
12 | P <= Pmax;
13 | End

Fig. 32 DEPS Problem ElecPb

wishes to know the unknown resistance of an electrical sys-
tem S represented by two resistors in series connected to a
voltage generator G. The Power P dissipated by the system
is constrained to not exceed a value Pmax. The goal is to find
one value for R/ and one value for G that requires the Power
P value dissipated between 10 W and Pmax.

7.5 Meta properties

The posing of a set of properties can be conditioned in DEPS
by the satisfaction of a logical formula. A logical formula is
a logical expression tree whose nodes are logical operators
(not, and, or, xor) and which leaves carry algebraic properties.

As an example, ((x =y) or (z = cos(y)) and (w +y =z +
x) is logical formula.

The result of the evaluation of a logical formula is done in
a trivalued logic. The formula can be certainly true, certainly
false or unknown.

As an example:

when x € [2, 10], y e [—1, 4],

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

P.-A. Yvars, L. Zimmer

(x > 2)and (y > 2)isunknown
but

when x € [-1, 1], y € [—1, 1],

(x > 2)and(y > 2)is certainly false
and

when x € [3, 10], y € [3, 10],

(x > 2)and (y > 2)iscertainlytrue

These formulas are used in two dedicated meta properties:
IfThen and IfThenElse.

Concerning the [fThen property it takes as argument a
logical formula and a list of algebraic properties. It is defined
using the following syntax:

IfThen (< Logical Formula >, < List Of Properties >);

If the logical formula is certainly true then the properties
of < List of Properties > are active. In the example below, if
X is greater than 3 and z is less than 20, then the properties
x2=16 and x + 7 = 15 are set.

IfThen((x > 3) and (z < 20), [x> = 16, x +z = 15]);

Concerning the IfThenElse property it takes as arguments
a logical formula, a list of algebraic properties to be set if
and only if the logical formula is certainly true and a second
list of properties to be set if and only if the logical formula
is certainly false.

It is defined using the following syntax:

IfThenElse(< Logical Formula >,
< List Of Properties >,
< Other List Of Properties >);

If the logical formula < Logical Formula > is certainly true,
then the properties of < List of Properties > are active, and if
the logical formula is certainly false, then the properties of
< Other List of Properties > will be active. In the following
example, if x is greater than 3 and z is less than 20, then the
properties x2 = 16 and x + z = 15 are set. Otherwise, the
properties x”2 = [and x + z = 10 are set.

IfThenElse((x > 3) and (z < 20), [x> = 16,
x+z=15], [x> =1, x +z = 10]);

Let us suppose we want to enrich our electrical system
model with a diode model. A diode conducts current as a

@ Springer

1 Model Diode() extends Dipole[]
2 Constants

3 VO : Voltage = 0.025875;

4 Vs : Voltage = 0.3;

5 10 : Intensity = le-15;

6 Variables

7 Vj : Voltage in [0, 20];

8 Elements

9 Properties

10 | IfThenElse((Vj < Vs),

11 [1=0],

12 [T=T0*exp((Vj/VO0)-1)]);
13 | End

Fig. 33 Using meta properties to model a diode

function of the voltage across its terminals. If the voltage at
its terminals is lower than a given threshold voltage Vs, then
the current becomes zero. Otherwise, it follows an exponen-
tial law. Figure 33 shows this law using the If Then Else
metaproperty.

8 The DEPS Studio IDE
8.1 Overview

The modeling and resolution process with DEPS is based
on a software environment called DEPS Studio [45]..It inte-
grates modeling and solving environment associated with the
DEPS language includes a model editor, a project manager, a
compiler and a solver (cf Fig. 34). Experience shows that the
specification of a system design problem is never right at the
first time and that many modeling errors are only detectable
by calculation. We therefore decided to develop and integrate
our own solver into the development environment so that the
solution finding contributes effectively to the problem mod-
eling process. This is a rapid model development approach
(analogous to a RAD approach) which, contrary to a model
transformation approach, reduces the execution time of the
model development loop. It also enables errors to be traced
back to the correct level of abstraction. DEPS Studio is cur-
rently available as a freeware on request via the contact page
of the deps link nonprofit organization website [46]. It can
be possible to contact the authors of this paper directly.

8.2 Editor and project management

A problem to be solved is organized into a project. A project
consists of several packages. Each package is saved in a file.
The packages contain models, kind of quantities, quantities,
and tables. One of the packages has to contain a particular
model without arguments and declared as the problem. This

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

DEPS: a model- and property-based language for system synthesis ...

ile Editon Show Project Solve Help

| Variables Expr

8 Project Management (m] 55 8 Link.deps (m] 3 D)
Access
Models Paths Quant Referential Link Truss Axis Co base gozmg gob‘em‘oo‘y
~ - ProblemGroup1 R = [0, 01 YT olving Process 3]
~ ROBOT CiUsersipayasiDocume § Y [0, 0] 0.001 =t Selutien
Quant deps CrUseripayasiDocumo i Uses Referential; . 5o 0007 Unknowns
Referential.deps CAUsers\payas\Documer . =t s :
Link deps Cruserapayasibocume il Model Link _opt1 Access
Truss.deps CAUsersy X (10, 10] 0.001 base
payasiDocumel
Axs.deps CiUsersipayasiDocumer(ill Constants Y [20, 20] 0.001 Isi4 x=[0.0]
Connect deps CAUSOTHLE/EED theta [1.5707963267949 , 1.5707963267949] 0.001 y=10.0l
A2DRobot deps S Variables jier theta=[0.0]
Point deps CAUsersipayasiDocumer RStruct it
Access.deps CAUsers\payas\Docume b1 led x=n0.10]
Universal.deps CiAUsersipayas\Documerfill Elements L [24.1046514622805 , 24.105379392864] 0.001 ¥ =[20.20]
CiUsersipayasiDocurnerill refin : Referential(); e fea theta = [1.67079632679.
refOut : Referential(); N [, 01 oot RDS‘"“C'
mat : Referential(); v [0.0] 0.001 jca L=[24.104651462280¢
SN T theta [0, 0.000768908867586848] 0.001 | ;ej[“o ol
refout &8 y=[0.0]
Properties x [24.1046514622805 , 24.105379392864] 0.001 | theta =[0 . 0.0007689
v [, 01 T jca refout
refOut.a = mat.a‘refin.a -mat.b*refin.b; theta [0, 0.000768908867586182] 0.001 [| yieegosesidozzac
refOut.x = mat.a*refln.x+ mat.a*refin.y + mz mat theta =[0.0.0007689
refOutb = mat.b*refin.a+ mat.a*refin.b; x [24.1046514622805 , 24.105379392864] 0.001 Isid gt
refOuty = matb*refin.x+ mat.a*refiny + ms 7 [0,0 ol X2 2410468145226
theta [0, 0] 0.001 Jsi¢ theta=10.0]
h b2
Loaded Default Apply Cancel =] -
P— =, ! 1
o
Fig. 34 DEPS Studio IDE
model represents the global problem to be solved expressed -
ec
with constants, variables, elements and properties.
The environment has:
ElecPb.S ElecPb.G
e A multi-window editor to load, modify and save packages,
e A project manager to load, modify and save the modeling
ElecPb.S.R1 ELecPb.S.R2 ElecPb.S.S

project of a problem made up of all its packages.

A project is defined as a set of packages. Each package
follows the following structure:

Package <packageName> ;

Uses <ListOfPackageName> ;

<List of DEPSFeature>

With

<DEPS Feature> ::= <QuantityKind>
| <Quantity>
| <Table>
| <Model>

| <Problem>

8.3 The compiler

The compiler we have developed directly transforms the
DEPS "source" model of a design problem into a structured
network of elements which properties are associated with
the < V, D, C > model of a Constraint Satisfaction Prob-
lem (CSP) [47]. It is thus a "native" compiler which is not
an overlayer of a constraint programming language. Com-
pilation is anticipated; the whole network is thus generated
before resolution.

Fig. 35 Example of an instance tree generated by the compiler

The static typing of the DEPS language is exploited by
the compiler to detect type errors on constant, variables and
elements before resolution.

The compilation is done in two passes:

The first compilation pass checks the packages used by
the project, analyzes lexically and syntactically their contents
and creates the hierarchy of the project models;

The second pass creates the set of elements that define
the problem starting from the creation of the single instance
element of the model declared as problem.

Errors are processed and reported to the user at all stages
of compilation: package checking, lexical analysis, syntactic
analysis, creation of the model hierarchy and creation of the
sub-defined elements.

The compiler produces a structured computational model.
This computational model is executed on an execution
machine, which is the mixed CP solver developed for this
purpose (cf Sect. 8.4).

If the compilation step succeeds, then the resolution step
will have the task of assigning values to the variables satis-
fying all the properties/constraints of the problem.

In the case of the ElecPb problem (cf Fig. 32), the com-
pilation generates the instance structure shown in Fig. 35.

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

P.-A. Yvars, L. Zimmer

Each instance contains its own sets of constants, variables
and properties. The structure of the problem is thus preserved
until its resolution.

8.4 The solver

Solving a design problem requires the ability to take into
account:

e Under-constrained problems

e Nonlinear algebraic equations and inequalities on mixed
domains

e Other types of relationships such as value tables.

To do so, we have developed a constraint-based solver
dedicated to computation on structured DEPS models. The
calculation methods we use come from CSP resolution tech-
nics [47]. The structure of the DEPS models is preserved
throughout the compilation chain up to the calculation mod-
els.

The solver implements a revised HC4 propagation method
[48] on equations and inequalities. Initially intended for con-
tinuous domains, we have extended the method to four types
of domains: open real intervals, integer intervals, enumer-
ated sets of floating values and enumerated sets of signed
integer values. For performance reasons, reductions are per-
formed directly on the typed domains without going back to
the real intervals. The root-finding algorithm uses a branch
and prune method. For the moment, only the classical round-
robin and first-fail strategies are implemented. In the case
of an over-constrained problem, a failure may occur at the
first propagation or after exploring the remaining parts of the
search tree. Following the CSP paradigm, the failure is inter-
preted as proof that there is no solution to the problem and
not as a failure of the solving algorithm. The object-oriented
architecture of the solver has been designed in such a way
that it can be extended to other existing propagation and/or
resolution methods (box-consistency, local methods, ...).

The tree in Fig. 34 is solved instantly by the solver and
gives the results in Table 1.

9 Validation

DEPS and DEPS Studio have recently been used successfully
on several academic and industrial case studies. In particu-
lar, they have been used to express and solve the following
problems:

e Deployment of avionics functions on embedded hardware
architectures with capacity, safety and reliability require-
ments in aeronautics [49].

@ Springer

Table 1 Results of DEPS Studio for the ElecPB problem

ElecPb

P [7.2,7.20659340659341]
G

U {12}

1 [0.6, 0.600549450549451]
ref {1}

Imax {300}

S

R1

U {6}

I [0.6, 0.600549450549451]
R [9.99085086916743, 9.99142268984446]
R2

U {6}

1 [0.6, 0.600549450549451]

e Software architecture synthesis of embedded electrical
generation and distribution system under safety con-
straints. [50].

e Sizing and architecture generation of battery-type electri-
cal storage system with mission profile requirements [51,
52].

e Configuration and positioning of an on board camera in a
UAV [17].

e Sizing of a power transmission system with environmental
requirements [53].

e Interms of the typology of problems described in Sect. 2.1,
the first two problems are a mix of PT1 and PT3 problems.
The last two problems are a mix of PT1, PT2 and PT4
problems.

All these case studies have been solved on a “basic”
machine, with the following specification: Gen Intel(R)
Core(TM) 17 @ 2.80 GHz, 4 cores. After compiling the mod-
els in DEPS Studio, we obtained the following resolution
times: 0.297 s for the first case, 0.15 s for the second one,
0.1 s for the third one, 0.19 s for the next one and 0.01 s for
the last one.

In order to illustrate the expressiveness and reusability
of DEPS language, we present in this paper two other case
studies that will be fully described:

e The problem of sizing a planar RR manipulator.
e The problem of deploying software tasks on a hardware
architecture embedded in a UAV.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

DEPS: a model- and property-based language for system synthesis ...

A
y0
_\\\"12) .
®
) P > Y
I yoe I
P 2
£ q] ““ .
0 X,

Fig.36 Geometry of the planar robot

9.1 Sizing of a planar RR manipulator
9.1.1 Problem description

Planar robots are a class of robots whose role is to access
points located on a plane. The robot itself is planar, i.e., its
effector (the end of the robot) necessarily has a planar tra-
jectory, generally in a plane parallel or coincident with the
plane in which the points to be reached are located. These
robots can be used to move objects on a plane or to implant
electronic components on a board.

Several architectures of planar robots exist [54]. We will
limit ourselves here to a simple chain planar robot with two
degrees of freedom.

In this paragraph, we present the example of the sizing of
a planar RR manipulator (Rotoide, Rotoide) (cf Fig. 36). In
terms of the typology of problems described in Sect. 2.1, this
is a PT1 problem.

A planar RR manipulator consists of a rotoid link param-
eterized by its rotation angle g; followed by an arm of length
I; and then a rotoid link parameterized by its rotation angle
q> followed by an arm of length/,.

The problem is to size the RR manipulator to reach one
or more points in the plane.

To design this manipulator implemented in (0, 0) in the
plane, it is necessary to determine the values of the design
variables /; and [, such that there is a value of the couple
of operating variables (g7, g2) allowing to reach a reference
frame P given in the plane by the coordinates of its origin (x,
y) and an angle g of orientation of its x-axis. The notation
used is that of Denavit—Hartenberg limited to the dimension
of the plane [55].

If we want to reach n points Pj, P, ..., P, in the plane with
our RR planar robot, we will have to determine a couple of
values /7, [such that whatever the point to be reached among

the n, this point is reachable.

31, 12) e RY™, Vi € {1, .., n}, 3(q1i, q2i)
€ [—m, w], IsReached (P;, q1;, q2i)

The referential to be reached by the end of our planar robot
(x and y are the coordinates of the origin of the referential
and q is the orientation) will therefore be represented by the
given 3 x 3 homogeneous matrix P such that:and when P is
reached by the robot we have the equality:

cosqg —sing x

P =] sing cosqg y
0 0 1
P = Rot(q1) x Trans(/1) x Rot(gz) x Trans(lp) (1)

With the rotation matrix Rot(g;) such that:

cosqg; —sing; 0
Rot(g;) = | sing; cosq; 0O

0 0 1
And with the translation matrix Trans(/;) such that:

101
010
001

Trans(l;) =

The second member of Eq. (1) is called the direct geomet-
ric model of the RR manipulator.

This case study is academic. The problem presents formal-
ization difficulties that will allow us to illustrate the interest
of the DEPS language. From the point of view of resolution,
it is an inverse problem.

9.1.2 DEPS modeling

We start by creating a Referential Model (cf Fig. 37). A ref-
erential is characterized by an origin (X, y) in the plane, and
an orientation angle (theta) relative to an absolute referential
located at (0,0) with the unit vectors (1,0) and (0,1).

Thus, the model of a link (cf. Figure 38) will include an
input referential (refln), an output referential (refOut) and
a passage matrix (mat), itself a referential, such that (cf
Fig. 39):

This last relationship is developed in the properties part
of the Link model. Link is an abstract model.

To create the model of a truss of our 2D robot (cf.
Figure 40), we will define an extended model of the linkage
model which will contain by construction all that a linkage
contains with in addition the specific characteristics of a truss,
i.e., in our case its length L, design variable of our robot.

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

P.-A. Yvars, L. Zimmer

Model Referential ()
Constants

Variables

X : Real;

y : Real;

theta : Angle;

expr a : Realin [-1, 1];
expr b : Real in [-1, 1];
Elements

Properties

a := cos(theta);

b :=sin(theta);

End

O 00 NN O Ul A W N

[S S
W N RO

Fig. 37 DEPS model of a 2D referential

Model Link() abstract

Constants

Variables

Elements

refln : Referential();

refOut : Referential();

mat : Referential();

Properties

(* refOut = mat * Refln *)

refOut.a = mat.a*refIn.a - mat.b*refln.b;
refOut.b = mat.b*refln.a+mat.a*refIn.b;
refOut.x = mat.a*refIn.x+mat.a*refln.y + mat.x;
refOut.y = mat.b*refln.x+mat.a*refln.y + mat.y;
End

O 0 N O U1 & W N~

N el e
AW N RO

Fig. 38 DEPS model of a 2D link

refOut

et

refOut = mat * refin

refln

Fig. 39 Mathematical modeling of a link

Moreover, our truss being totally defined once the value of
the variable L is fixed, the corresponding referential will be
blocked in rotation (mat.theta = 0) and along the y axis (mat.y
= 0). The translation along the x axis is L (mat.x = L).

In the same way, we can create an axis model (cf Fig. 40)
corresponding to a zero translation and a rotation of an angle
q.

We then describe a connection model between two links
which specifies that the output referential of the first link will

@ Springer

1 Model Truss(Lmax) extends Link][]
2 Constants

3 Lmax : Real,

4 Variables

5 L : Real in [0, Lmax];

6 Elements

7 Properties

8 mat.,y =0; mat.x =L; mat.theta=0;
9 End

10

11 | Model Axis() extends Link[]

12 | Constants

13 | Variables

14 | q: Angle;

15 | Elements

16 | Properties

17 | maty=0; matx=0; mat.theta=q;
18 | End

Fig. 40 DEPS models of 2D Truss and Axis

1 Model Connect(L1, L2)

2 Constants

3 Variables

4 Elements

5 | LI : Link[]; L2 : Link[];

6 Properties

7 L1.refOut.x = L2.refln.x;

8 L1.refOut.y = L2.refIn.y;

9 L1.refOut.theta = L2.refIn.theta;

10 | End

11

12 | Model Connect(L, P)

13 | Constants

14 | Variables

15 | Elements

16 | L:Link[]; P :Point [Real, Real, Angle];
17 | Properties

18 | Ll.refOut.x =P.x; Ll.refOut.y =P.y;
19 | End

Fig. 41 DEPS model of connection between two links

be identical to the input referential frame of the second link
(cf Fig. 41).

‘We can now use these different models to build a model of
the robot’s structure RobotStruct (cf Fig. 42) and a model of
its behavior RobotBehav (cf Fig. 43). Note that the structure
model is an argument of the behavior model. Thus, the struc-
ture of the robot can be shared between all these behaviors.

Thus, a 2D robot structure (cf. Figure 42) has a fixed
known base represented by the base argument and a 2D robot

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

DEPS: a model- and property-based language for system synthesis ...

Model RobotStruct(base)
Constants

Variables

Elements

base: Point[Real, Real, Angle];

bl : Truss(1000); b2 : Truss(1000);
Properties

End

O N OUl s W

Fig. 42 DEPS model of the RR robot structure

Model RobotBehav(RStruct, effector)
Constants

Variables

Elements

RStruct : RobotStruct[Point[Real, Real, Angle]];
effector : Point[Real, Real, Angle];

jl: Axis(); j2 : Axis();
cl: Connect(j1, RStruct.bl);

c2: Connect(RStruct.bl, j2);

c3: Connect(j2, RStruct.b2);
Connect(RStruct.b2, effector);
Properties

jl.refln.x := RStruct.base.x;

jl.refIn.y := RStruct.base.y;
jl.refIn.theta := RStruct.base.theta;

End

O 0 N O U1 B W NP

=
= o

access :

e
vl W N

-
o))

Fig. 43 DEPS model of the RR robot behavior

Model RobotStruct(base)

Constants

Variables

Elements

base: Point[Real, Real, Angle];

bl : Truss(1000); b2 : Truss(1000);

b3 : Truss(1000); (* new Truss b3 for the RRR robot *)
Properties

End

O 0 N O Ul AW N

Fig. 44 DEPS model of the RRR robot structure

behavior has an end carrying referential represented by the
effector argument.

The models have been written in such a way to facilitate
their reusability and extensibility. Thus, if we now wish to
represent an RRR robot with a third rotoid joint associated
with a third bar, we will simply add a bar in the RobotStruct
model and arotoid and a connection in the RobotBehav model
as shown in Fig. 44 and Fig. 45 where the adds are indicated
in red color.

Now the problem (cf Fig. 46) is to look for the robots
positioned in (0,0) whose design variables RStruct.bl.L and

1 Model RobotBehav(RStruct, effector)

2 Constants

3 Variables

4 Elements

5 RStruct : RobotStruct[Point[Real, Real, Angle]];

6 effector : Point[Real, Real, Angle];

7 jl: Axis(); j2 : Axis();

8 j3: Axis(); (* new joint for the RRR Robot *)
9 cl: Connect(j1, RStruct.bl);

10 | c2: Connect(RStruct.bl, j2);

11 | c3: Connect(j2, RStruct.b2);

12 | (* c4 and ¢5 new connection for the RRR Robot *)
13 | c4: Connect(Rstruct.b2, j3);

14 | ¢5: Connect(j3, RStruct.b3);

15 | access: Connect(RStruct.b3, effector);

16 | Properties

17 | jl.refln.x := RStruct.base.x;

18 | jl.refIn.y := RStruct.base.y;

19 | jl.refln.theta := RStruct.base.theta;

20 | End

Fig. 45 DEPS model of the RRR robot behavior

Problem Access

Constants

Variables

Elements

base: Point(0,0,0);

ptl : Point(10, 20, Pi/2);

pt2 : Point(-10, 20, -Pi/2);

RStruct : RobotStruct(base);
RBehav1: RobotBehav(RStruct, ptl);
RBehav2 : RobotBehav(RStruct, pt2);
Properties

End

O 0 N O Ul B W NP

=
N = O

Fig. 46 DEPS model of the RR robot sizing problem

RStruct.b2.L are such that there exists a configuration of the
axes RBeehavl.jl and RBehavj2 (i.e., that the angles RBe-
havl.jl.q and RBehavl.j2.q exist) in order to reach the frame
of reference ptl located in (10, 20, 1t/2). If we want to find
a robot that reaches two points pt; and pt2, we just need to
add an instance of the RobotBehav model RBehav2 in the
elements of the problem (cf Fig. 45).

9.1.3 Solving results

After having compiled this problem in the DEPS Studio envi-
ronment, we launch the solver. It immediately tells us by
constraint propagation that there is no solution with a sin-
gle robot to reach the two points ptl and pt2. We relax the
constraint to reach point pt2 in the model and restart the
solver and obtain a first solution for the bar lengths bl and

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

P.-A. Yvars, L. Zimmer

Table 2 First robot structure solution generated by DEPS Studio

Table 3 Requirement 2

Access

RStruct

bl

L [24.1046514622805, 24.105379392864]

b2
L [3.462575347161, 3.46338845332416]

b2 shown in Table 2 in 0.63 s on a Gen Intel(R) Core(TM) i7
@ 2.80 GHz, 4cores. This illustrates the interest of having an
integrated modeling and solving environment for the system
design activity.

9.2 Software task deployment on heterogeneous
embedded drone architecture

9.2.1 Problem description

The second problem is described in [1, 56] and it deals
with Unmanned Aerial Vehicle (UAV) also called drone. The
degree of autonomy of these systems evolves progressively
from the tracking of a trajectory defined by an operator to
a complete autonomy. In the case of trajectory tracking, a
key functionality of the UAV is its ability to detect obsta-
cles and plan a new trajectory that will allow it to avoid the
UAV while continuing its path to the desired destination. This
function composed of obstacle detection, decision making
and calculation of a new trajectory must be ensured by the
drone alone, without intervention from the ground station, in
order to gain in efficiency. It must also be optimized to adapt
to the drone’s energy resources. The obstacle detection and
avoidance functionality is provided by a platform (HW) using
a heterogeneous multi-core architecture (SHMC processor),
which allows the UAV to have a high computing power while
reducing its energy consumption (compared to a single-core
or homogeneous multi-core processor). The SHMC proces-
sor is composed of cores with different computing power but
using the same instruction set. A core can thus be allocated
to any software task, without the need for recompilation. The
cores can also be shut down when they are not allocated to
any task, without the need to be kept in a sleep mode. On
this type of processor we generally find a set of more power-
ful cores (Big Core) and a set of less powerful cores (Little
Core). The platform used for the case study is an Exynos
5422 processor, composed of four Cortex A15 cores called
"BigCore" and four Cortex A7 cores called "LittleCore". The
maximum power dissipation is 4 Watt for a Big Core and 1
Watt for a Little Core.

@ Springer

Task Core number
TO [11, 8]
T1 {1,5}
T2 {2,6}
T3 [11, 8]
T4 [11, 8]
TS [11, 8]
T6 {3,7}
T7 [11, 8]
T8 [11, 8]
T9 [11, 8]

The problem consists of deploying ten tasks (image acqui-
sition, filtering, obstacle detection, ...) on a maximum of 8
processors (cores) by satisfying a set of constraints. In terms
of the typology of problems described in Sect. 2.1, this is a
PT3 problem.

A task is characterized by:

e A memory size required for its execution (MemorySize).

e A period (Period).

e Two WCET (Worst Case Execution Time) depending on
whether the task is performed by a Big Core (WCETBC)
or a Little Core (WCETLC).

As an example the first Task TO called "GetFrame" will
capture camera images and place them in memory in a FIFO
queue. The second T1 called "ShowPicture" distributes these
images so that they can be filtered by the two filtering tasks.
Task T2 and T3 called “Filtering 1” and “Filtering 2” will
filter the queued images, in order to extract the edges of the
objects These two tasks have a high WCET, but can be allo-
cated to two different cores for parallel execution, with a
semaphore to prevent concurrent access to the same image.

A core is characterized by:

e An index (Index) By convention the indexes from 1 to 4
refer to the BigCore and the indexes from 5 to 8 refer to
the LittleCore,

e A maximum amount of available RAM (Memory).

One core must be allocated to each of these ten tasks,
meeting the following requirements (constraints):

e Req 1: A task Tj is deployed on one and only one core.

e Req 2: Some tasks can only be performed by certain cores
according to Table 3.

e Req 3 : Some tasks must be performed by the same core
or by two different cores. This type of constraint is noted

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

DEPS: a model- and property-based language for system synthesis ...

OnSameCore or OnDifferentCore. These constraints group
together tasks sharing a large amount of data (images
stored after acquisition) and separate other tasks for par-
allelism or reliability (in case of failure of a core). Thus,
Tasks T1 and T3 as well as Task T2 and T4 must necessar-
ily be deployed on the same core. Similarly, Task TO and
T1 must necessarily be deployed on different cores.

e Req4: The amount of RAM memory available in each core
to execute the tasks assigned to it must not be exceeded.
Thus, the sum of the memory sizes required to perform the
tasks assigned to a core must be less than or equal to the
memory size of the considered core.

e Req 5:The utilization rate of each core, which must not
exceed 100%. Thus the sum of the quotients of WCET by
the period for each task assigned to a core must be less
than or equal to 1.

9.2.2 DEPS modeling

First we will model the Cores and the tasks in DEPS. For
the Cores (cf Fig. 47), we create a very general Core model.
A core is defined by its index (Index) from 1 to 8 and by
a memory capacity (Memory) of a maximum of 2000. We
then extend the Core model into two derived models BigCore
and LittleCore. We consider that the Cores from 1 to 4 are

1 Model Core(Index) abstract

2 Constants

3 Index : Integerin[1,8];

4 Memory : MemorySize = 2000; default ;
5 Variables

6 Elements

7 Properties

8 End

9

10 | Model BigCore () extends Core [Integer]
11 | Constants

12 | Index : Integer in [1,4]; redefine ;

13 | Variables

14 | Elements

15 | Properties

16 | End

17

18 | Model LittleCore () extends Core [Integer]
19 | Constants

20 | Index : Integer in [5,8]; redefine ;

21 | Memory : MemorySize = 500; redefine ;
22 | Variables

23 | Elements

24 | Properties

25 | End

Fig. 47 DEPS models of the different cores

Model Task (Memory, WCETBC, WCETLC, Period)
Constants

Memory : MemorySize;
WCETBC : Time;
Variables
CoreNumber : Integer in [1,8]; default ;
expr bcRate : PositiveReal;

expr IcRate : PositiveReal;

Elements

Properties

bcRate := WCETBC / Period ;

IcRate := WCETLC / Period;

End

Period : Time;
WCETLC : Time;

O 0 N O Ul bh W N

=R
WN RO

Fig. 48 DEPS model of task

1 Model TaskTypel()

2 extends Task [MemorySize, Time, Time, Time]
3 Constants

4 Variables

5 CoreNumber : Integer in {1,5}; redefine;

6 Elements

7 Properties

8 End

9

10 | Model TaskType2()

11 | extends Task [MemorySize, Time, Time, Time]
12 | Constants

13 | Variables

14 | CoreNumber : Integer in {2,6}; redefine;

15 | Elements

16 | Properties

17 | End

18

19 | Model TaskType3()

20 | extends Task [MemorySize, Time, Time, Time]
21 | Constants

22 | Variables

23 | CoreNumber : Integer in {3,7}; redefine;

24 | Elements

25 | Properties

26 | End

Fig. 49 DEPS model of the three types of specialized tasks

BigCore and that those from 5 to 8 are LittleCore. Moreover,
the LittleCore instances have a memory capacity reduced
to 500. The Index and Memory constants will therefore be
redefined.

Regarding the representation of the tasks (cf Fig. 48), they
are characterized by their memory requirements (Memory),
their WCETBC, WCETLC and their Period. Finally, each
task carries as unknown the Core to which it will be assigned
during the resolution of the problem (CoreNumber) in accor-
dance with the Reql requirement.

Some tasks can only be assigned to certain Cores. We
have therefore extended the 7ask model into three models

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

P.-A. Yvars, L. Zimmer

Model ConstraintBetweenTasks (T1, T2) abstract
Constants

Variables

Elements

T1 : Task [MemorySize, Time, Time, Time];

T2 : Task [MemorySize, Time, Time, Time];
Properties

End

O 0 NN O Ul A W N

=
o

Model OnDifferentCore()

extends

ConstraintBetweenTasks
[Task[MemorySize, Time, Time, Time],
Task[MemorySize,Time,Time, Time]]
13 | Constants

14 | Variables

15 | Elements

16 | Properties

17 | T1.CoreNumber <> T2.CoreNumber;
18 | End

19
20 | Model OnSameCore()

21 | extends

22 | ConstraintBetweenTasks
[Task[MemorySize, Time, Time, Time],
Task[MemorySize,Time,Time, Time]]
23 | Constants

24 | Variables

25 | Elements

26 | Properties

27 | T1.CoreNumber = T2.CoreNumber;
28 | End

=
N =

Fig. 50 DEPS models of constraints between two tasks

(cf Fig. 49) TaskTypel, TaskType2, TaskType3 by redefining
for each one the set of possible core indexes in accordance
with the Req2. The TaskTypel model specifies that this type
of task can only be executed on core 1 or core 5. In the same
way, the TaskType2 model specifies that this type of task can
only be executed on cores2 or core 6. In order to be able to
express the Req3 requirement, we have defined models (cf
Fig. 50) allowing the designer to set properties on a pair of
tasks: both tasks on the same processor (OnSameCore) or on
two different processors (OnDifferentCore).

A Model has also been created to express Req4 and Req5
requirements (cf Fig. 51).

Finally, the problem is expressed in Fig. 52:

e The different processors are created: BCorel to BCore4
instances of the BigCore model and LCore5 to LCore8
instances of the LittleCore model.

e The different tasks are created: 71 instance of the Task-
Typel model, T2 instance of the TaskType2 model and 70,
T2, T3, T4, TS, T6, T7, TS, T9 instances of the Task model.

@ Springer

1 Model MemoryAndUsageCoreCapacity (TO, ..., T9, BigCore)

2 Constants

3 Variables

4 expr b0 : Boolean ; ... expr b9 : Boolean;

5 expr MemoryCapacity : MemorySize;

6 expr UsageCapacity : Real in [0, 1];

7 Elements

8 TO : Task[MemorySize, Time, Time, Time];

9 .

10 | T9 : Task[MemorySize, Time, Time, Time];

11 | Core : Core[Integer];

12 | Properties

13 | b0 := 0"abs(T0.CoreNumber-Core.Index);

14 | ...

15 | b9 := 0Mabs(T9.CoreNumber-Core.Index);

16 | (* The sum of the memory sizes of the tasks performed by the
core must be less than or equal to the memory size of the core *)

17 | memoryCapacity := b0*T0.Memory + ... + b9*T9.Memory;

18 | MemoryCapacity <= Core.Memory;

19 | (* Core usage rate must be less than or equal to 1 *)

20 | UsageCapacity := b0*T0.bcRate + b1*T1+ ...+ b9*T9.bcRate;

21 | UsageCapacity <= 1;

22 | End

Fig. 51 DEPS model of the usage rate and memory capacity

Problem CoreAllocation
Constants

Variables

Elements

(* creation of the 8 cores *)
BCorel : BigCore(1);
BCore3 : BigCore(3);
LCoreS : LittleCore5);
LCore7 : LittleCore(7);

BCore2 : BigCore(2);
BCore4 : BigCore(4);
LCore6 : LittleCore(6);
LCore8 : LittleCore(8);

O 0 O Ul A WN =

10 | (* creation of the 10 tasks *)

11 | TO: Task (300,10,30,80);

12 | T1 TaskTypel (100,20,45,90);

13 | T2 TaskType2 (200,30,55,100);

14 | T3 Task (100,30,60,100); T4 : Task (200,20,55,80);

17 | T5 Task (200,15,45,70); T6 : TaskType3 (200,30,45,90);
16 | T7 Task (200,35,50,100); T8 : Task (300,20,40,90);

17 | T9 Task (400,40,60,100);

18 | (* constraints between tasks Req3*)
19 | Ctl : OnSameCore(T1, T3); Ct2 : OnSameCore(T2, T4);
20 | Ct3 : OnSameCore(T6, T7); Ct4 : OnDifferentCore(T0, T1);

22 | (* BigCore usage rate and capacity constraints Req4 Req5*)

23 | Ct5: MemoryAndUsageCoreCapacity (T0,T1, ..., T9, BCorel);
24 | Ct6 : MemoryAndUsageCoreCapacity(T0,T1, ..., T9, BCore2);
25 | Ct7: MemoryAndUsageCoreCapacity(T0, T1, ..., T9, BCore3);
26 | Ct8 : MemoryAndUsageCoreCapacity(TO0, T1, ..., T9, BCore4);

27 | (* LittleCore usage rate and capacity constraints Req4 Req5*)
28 | Ct9 : MemoryAndUsageCoreCapacity (T0, T1, ..., T9, LCore5);
29 | Ct10: MemoryAndUsageCoreCapacity(TO, T1,...,T9, LCore6);
30 | Ctl1: MemoryAndUsageCoreCapacity(TO0,T1,..., T9, LCore7);
31 | Ctl12: MemoryAndUsageCoreCapacity(TO0,T1,..., T9, LCore8);
32 | Properties

33 | End

Fig. 52 DEPS model of the deployment problem

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

DEPS: a model- and property-based language for system synthesis ...

Table 4 First deployment solution generated in DEPS Studio

Allocation

TO

CoreNumber 3
T1

CoreNumber 1
T2

CoreNumber 2
T3

CoreNumber 1
T4

CoreNumber 2
TS5

CoreNumber 2
T6

CoreNumber 7
T7

CoreNumber 7
T8

CoreNumber 2
T9

CoreNumber 1

e The constraints between tasks are set: Ct/ to Ct3 instances
of the Onsamecore model and Ct4 instance of the OnDif-
ferentCore model.

e Finally, the capacity and usage rate constraints on the
processors are set: Ct5 to Ct12 as instances of the Memo-
ryAndUsageCoreCapacity model.

9.2.3 Solving results

The experiments were carried out on a “basic”” machine, with
the following specification.: Gen Intel(R) Core(TM) i7 @
2.80 GHz, 4 cores. After compiling the models in DEPS
Studio, a first solution (cf Table 4) is generated in around 2 s
(2, 735 s). It is correct by construction with regard to all the
requirements expressed.

9.3 Discussion

In this section, we propose to examine the advantages and
limitations of our approach in the light of the previous case
studies. Again, the point of view we adopt in DEPS is that
of representing the design problem with a view to its auto-
matic resolution. Another important point is that we want to
offer a modeling language that can be used by an embedded
system designer as well as a mechanical or electrical system

designer, and not a programming language that can only be
used by a computer scientist. The language was built through
an inductive research. Starting with real life cases of design
problems, we tried to factorize language elements, gradually
leading to the current version of the language. This version
was then put to the test on other different problems. Either we
were able to represent these problems, or we had to evolve
the language. This was and still is our way of enriching the
language.

From the point of view of the system design cycle as
described in [10, 11], DEPS and DEPS Studio are clearly
positioned on the so-called architecture or preliminary design
stages of the system. DEPS enables a design problem to be
represented using coarse-grained models for doing model-
based system synthesis.

From the point of view of the systems to be designed,
the language can be used to represent structured systems
that can be structurally or functionally decomposed. Tech-
nological systems (mechanical, electrical, electronic, ...),
software-intensive systems (embedded systems) or mixed
systems such as cyber-physical systems can thus be taken
into account in their preliminary design phases. DEPS Stu-
dio can generate several solutions for systems that are correct
by construction. However, in its current version, DEPS Stu-
dio will not synthesize computer code.

From the point of view of the typology of design problems
proposed in Sect. 2.1, we have seen that all the case studies
discussed or detailed in this paper illustrate the coverage of
the typology’s 4 problem types. For the moment, however,
the language does not offer the ability to manipulate lists of
elements and post properties on these lists. This could be
an interesting convenience that is being studied for a future
version of the language.

DEPS enables the simultaneous consideration of hetero-
geneous requirements within a single problem, which can be
represented in the form of algebraic, conditional or exten-
sional properties on variables that can take their values in
mixed domains (continuous intervals, integer intervals and
enumerations). If the requirements to be represented require
the use of fine-grained models in the form of differential
equations or finite-state automata, their verification will be
delegated to the step of detailed system design, using other
formalisms (AADL or Modelica, for example).

With regard to the DEPSStudio IDE, the integrated
approach of modeling + compilation + resolution in a sin-
gle software package makes it easier to refine the models.
Indeed, the computational model generated by the compiler
has the same structure as the problem model expressed in
DEPS. The solver’s results are therefore given directly in the
modeling language and not in the language of an external
solver.

Compared with existing general purpose problem-
modeling languages such as AMPL [23], MiniZinc [24],

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

P.-A. Yvars, L. Zimmer

OPL [22] or GAMS [25], DEPS offers structuring capabil-
ities, as well as the ability to deal with mix variables and
to combine models. These features naturally favor model
reusability and extensibility. It allows the designer, to express
algebraic, conditional and extensional properties on mixed
variables. Compared with state-of-the-art attempts such as
ThingLab [26], S-Comma [33, 34], COB [30], DEPS inte-
grates notions that are non-existent in these works, such as
parameterized models, model signatures, aggregation, com-
position, and model overloading. Compared with product line
representation languages such as Clafer [19], DEPS natively
allows the representation of mixed problems that must satisfy
nonlinear algebraic properties.

From the point of view of scalability, DEPS allows the
representation of large-scale problems. Models are extensible
and reusable, especially due to the notions of signature and
inheritance, as well as the passing of elements and constants
as model arguments, which is not the case with other state-
of-the-art approaches. As far as solving is concerned, the
DEPS Studio solver is subject to the same constraints as all
Constraint Programming (CP) solvers: a NP hard problem
remains a difficult problem to solve. But most of time the
first step is to correctly represent the design problem to solve
in a way that is intelligible, extensible and reusable for the
designer.

10 Conclusion

In this paper, we have presented the first implemented ver-
sion of DEPS, a language designed to represent and solve
system design problems. The targeted systems are physical,
software-intensive or mixed systems (embedded, mecha-
tronic, cyber-physics).

With regard to the research gap, DEPS makes it possible
to fill the lack of structuring in current flat problem modeling
languages by proposing a declarative, textual and structured
language based on properties encapsulated in models.

In its current version, DEPS makes it possible to express
sizing problems naturally. It also has functionalities enabling
the representation of some problems of configuration, alloca-
tion and architecture. We are currently working on enriching
the language so that it will express other types of design
problems in later versions. We focus on the building of col-
lections of elements and the expression of properties on
them. We are also working on the implementation of special-
ized constraints. The long-term goal is to address complex
architecture synthesis problems combining many functional
(performance,...) and non-functional requirement (safety,
security..)

The results will be integrated in the next version of DEPS
Studio.

@ Springer

Moreover, DEPS and DEPS Studio have recently been
used to describe and solve various academic and industrial
application cases [17, 49-53].

References

1. Leserf, P, de Saqui-Sannes, P., Hugues, J.: Trade-off analysis
for SysML models using decision points and CSPs. Softw. Syst.
Model. 18(6), 3265-3281 (2019)

2. Object Management Group (OMG), Unified Modeling Lan-
guage, Version 2.5.1, formal/17-12-05 (https://www.omg.org/
spec/UMLY/)

3. Object Management Group (OMG). OMG Systems Modeling Lan-
guage (OMG SysML), Version 1.6. OMG Document Number
formal/19-11-011 (https://www.omg.org/spec/SysML/), (2019)

4. Society of Automotive Engineers. SAE Standards: Architecture
Analysis & Design Language (AADL), AS5506d, April 2022.
(https://www.sae.org/standards/content/as5506d/), (2022)

5. Modelica Association. Modelica: A unified object-oriented lan-
guage for systems modelling—Language specifications. March
2023. https://specification.modelica.org/maint/3.6/MLS.html,
(2023)

6. Shah, A.A., Paredis, C.J.J., Burkhart, R., Schaefer, D.: Combining
mathematical programming and SysML for automated component
sizing of hydraulic systems. J. Comput. Inform. Sci. Eng. 1(44113),
1231-1245 (2012)

7. Parasolver. Artisan Studio Para Solver™ 7.2 R1 Tutorials. www.
InterCax.com. (2013)

8. Creff, S., Le Noir, J., Lenormand, E., & Madelénat, S.: Towards
Facilities for Modeling and Synthesis of Architectures for Resource
Allocation Problem in Systems Engineering. Proc of 24th Systems
and Software Product Line Conference. Montreal. (2020)

9. OCL. OCL 2.4. https://www.omg.org/spec/OCL/2.4/PDF. (2014)

10. IEEE Standard for Application and Management of the Systems
Engineering Process, IEEE Std 1220-2005, pp c1-66,2007. https://
standards.ieee.org/standard/1220-2005.html (2007)

11. Technical Committee ISO/IECITC1/SC7. Iso/iec/ieee
42020:2019—software, systems and enterprise—architecture
processes. ISO/IEC/IEEE 42020:2019, pp. 110,07 2019. (2019)

12. INCOSE, Systems Engeneering vision 2035, online (https://violin-
strawberry-9kms.squarespace.com/) (2023)

13. SysML V2, 2017, https://www.omgsysml.org/SysML-2.htm
(2017)

14. Zeigler, B., Kim, T., Praechofer, H.: Theory of modeling and simu-
lation, Academic Press, (2000)

15. Abrial,J.: Modeling in Event-B: System and Software Engineering,
Cambridge Press, (2010)

16. Batteux, M., Prosvirnova, T., Rauzy, A.: System Structure
Modeling Language (S2ML) (2015).URL https://hal.science/hal-
01234903/document (2015)

17. Yvars, P.A., Zimmer, L.: Towards a correct by construction design
of complex systems: the MBSS approach. Proced. Proced. CIRP
109C, 269-274 (2022)

18. Zimmer, L., and Zablit, P.: Global aircraft predesign based on con-
straint propagation and interval analysis. CEAS Conference on
Multidisciplinary Aircraft Design and Optimization, Koln, Alle-
magne. (2001)

19. Bak, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., Wasowski, A.:
Clafer: Unifying class and feature modeling. Softw. Syst. Model.
15, 811-845 (2014)

20. Eugene, A., Thao, D., Oded, M., and Romain, T.: Using redun-
dant constraints for refinement. In Ahmed Bouajjani and Wei-Ngan

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

DEPS: a model- and property-based language for system synthesis ...

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

Chin, editors, Automated Technology for Verification and Analy-
sis, pp. 37-51, Berlin, Heidelberg, (2010). Springer Berlin Heidel-
berg

Famelis, M., Salay, R., Chechik, M.: Partial models: Towards mod-
eling and reasoning with uncertainty. ICSE pp. 573-583 (2012)
OPL manual. https://www.ibm.com/docs/en/icos/12.8.0.0?topic=
manual-opl-modeling-language

Fourer, R., Gay, D.M., & Kerdighan, D.W.: AMPL A language
for mathematical programming. Duxbury & Thomson. 2003.
https://ampl.github.io/ampl-book.pdf (2003)

Nethercote, N., Stuckey, PJ., Becket, R., Brand, S. Duck, G.J.
and Tack, G.: MiniZinc: Towards a standard CP modelling lan-
guage. In C. Bessiere, editor, Proceedings of the 13th International
Conference on Principles and Practice of Constraint Programming,
volume 4741 of LNCS, pages 529-543. Springer, (2007)
Rosenthal, R.E.: GAMS a users’s guide. GAMS Development Cor-
poration, Washington (2007)

Borning, A.: ThingLab—An Object-Oriented System for Building
Simulations Using Constraints. Sth International Joint Conference
on Artificial Intelligence (IJCAI 1977), Cambridge, MA, USA, vol.
1, pp. 497-498. (1977)

Shvetsov, ., Semenov, A., Telerman, V.: Application of subdefinite
models in engineering. Artif. Intell. Eng. 11(1), 15-24 (1997)
Bensana, E., and Mulyanto, T.: A generic approach for conceptual
design based on object oriented and constraint logic programming.
EDA 2000. (2000)

Mulyanto, T.: Utilisation des techniques de programmation par
contraintes pour la conception d’avions. These de I’Ecole Nationale
Supérieure de I’ Aéronautique et de I’Espace, France. (2002)
Jayaraman, B., Tambay, P.: Modeling engineering structures with
constrained objects PADL 2002. LNCS 2257, 28-46 (2002)
Tambay, P., and Jayaraman, B. The Cob Programmer’s Man-
ual.http:// www.cse.buffalo.edu/tech-reports/2003-01.pdf (2003)
Jackson, D.: Software Abstractions: Logic, Language, and Analy-
sis. MIT Press. ISBN 978-0-262-10114-1. (2006)

Soto, R.: Langage et transformation de modeles en programma-
tion par contraintes. These de Doctorat de 1’Université de Nantes,
France (2009)

Soto, R. and Granvilliers, L. s-COMMA User’s Manual. http://
www.inf.ucv.cl/~rsoto/s-comma/ (2007)

Vargas, C., Saucier, A., Yvars, P.A.: Ingénierie d’aide a la concep-
tion: un environnement pour la réalisation d’un systeme d’aide
a la conception d’organes mécaniques. Revue Int. de CFAO et
d’Infographie 10(1-2), 113-128 (1995)

Sellini, F., and Yvars, P.A.: Modeles objet et représentation déclar-
ative du produit en conception mécanique. Revue L’ Objet, Numéro
spécial: les représentations par objet en conception, 4(2) (1998)
Albarello, N., Welcomme, J.B., and Reyterou, C.: A formal design
synthesis and optimization for systems architectures. 9th Inter-
national Conference of Modeling, Optimization and Simulation
(MOSIM’12), Bordeaux, France. (2012)

Burgueno, L., Mayerhofer, T., Wimmer, M., Vallecillo, A.: Speci-
fying quantities in software models. Inform. Softw. Technol. 113,
82-97 (2019)

OMG SysMl QUDV. https://www.omgwiki.org/OMGSysML/
doku.php?id=sysml-qudv:quantities_units_dimensions_values_
qudv

QUDT Ontology. https://www.qudt.org/

Modelica units. https://doc.modelica.org/Modelica%204.0.0/
Resources/helpDymola/Modelica_Units.html

42.

43.

44.

45.

46.
47.
48.

49.

50.

51.

52.

53.

54.

55.

56.

Taylor, B.N, and Thomson, A. The International System of Units
(SD). NIST, http://www.nist.gov/pml/pubs/sp811/. (2008)
International Vocabulary of Metrology—Basic and general
concepts and associated terms, 3rd edition, (https://www.bipm.
org/documents/20126/2071204/JCGM_200_2012.pdf/f0e1ad45-
d337-bbeb-53a6-15fe649d0ff1), (2008)
Gibbings, J.C.: Dimensional
ISBN 978-1-84996-316-9 (2011)
Yvars, P.A., Zimmer, L. Integration of Constraint Programming and
Model-Based Approach for System Synthesis, proc of the IEEE
International Systems Conference, SYSCON, Vancouver, Canada.
(2021)

DEPS link nonprofit organization. https://www.depslink.com
Tsang, E.: Foundations of Constraint Satisfaction. Academic Press,
London and San Diego (1993)

Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising
Hull and Box consistency,16th International Conference on Logic
Programming, (1993)

Zimmer, L., Yvars, P.A., Lafaye, M.: Models of requirements for
avionics architecture synthesis: safety, capacity and security, Proc
of the 11th Complex System Design and Management (CSDM)
conference. France, Paris (2020)

Yvars, P.A., Zimmer, L.: Synthesis of software architecture for the
control of embedded electrical generation and distribution system
for aircraft under safety constraints: The case of simple failures,
proc of the 14th International Conference of Industrial Engineering,
CIGI-QUALITA 2021, Grenoble, France, (2021)

Diampovesa, S., Hubert, A., Yvars, P.A.: Designing physical sys-
tems through a model-based synthesis approach. Example of a
Li-ion Battery for Electrical Vehicles, Computers In Industry, Vol.
129, (2021)

Hubert, A., Forgez, C., Yvars, P.A.: Designing the architecture of
electrochemical energy storage systems. A model-based system
synthesis approach, Journal of Energy Storage, Vol 54, Elsevier,
(2022)

Yvars, P.A., Zimmer, L.: A Model-based Synthesis approach to
system design correct by construction under environmental impact
requirements, Procedia CIRP, Vol 103, Elsevier, (2021)

McCloy, D.: Some comparisons of serial-driven and parallel driven
manipulators. Robotica 8(4), 355-362 (1990)

Khalil, W., Dombre, E.: Modeling, identification and control of
robots. Taylor Francis, New York (2002)

Leserf, P.: Optimisation de I’architecture de systemes embarqués
par une approche basée modele, Phd Thesis, Toulouse University
(2017)

Analysis, Springer,

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

P.-A. Yvars, L. Zimmer

Pierre-Alain Yvars received an
Engineering and Master Degree
from the Ecole Centrale de lille,
a Master Degree in computer sci-
ence and automation and a Ph.D.
from the Universtity of Lille,
France. He has an French habil-
itation to lead research form the
University of Grenoble, France.
After conducting research and
development in the PSA Peugeot
Citroén Company in robotics,
Al, constraint programming
and design, he joins the ISAE-
Supméca as a full Professor. He
is currently focusing on the specification and the development of
Model-based System Synthesis (MBSS) methods and tools applied to
the design and the certification of complex systems architectures be
they real-time, embedded, software-intensive or even cyber-physical.
He is co-creator and co-designer of the DEPS Language and the
DEPS Studio IDE.

@ Springer

Laurent Zimmer is a graduate of
the Faculty of Science and Engi-
neering of Sorbonne University.
Computer scientist specialized in
Artificial Intelligence; he is cur-
rently Senior Research Engineer
in the Research and Future Busi-
ness Directorate of Dassault Avia-
tion. As an expert in Model-Based
Reasoning and Problem Solving,
he has coordinated or participated
to several national or European
research projects some of them
leading to the design and develop-
ment of Computer Assisted Engi-
neering software such as model-based diagnosis tools, qualitative sim-
ulators and constraint-based solvers. More recently he has investigated
Knowledge Representation and Reasoning issues raised by the Model-
based system engineering (MBSE) approach to systems engineering.
He is currently focusing on the specification and the development of
Model-based system synthesis (MBSS) methods and tools applied to
the design and the verification of complex systems architectures be
they real-time, embedded, software-intensive or even cyber-physical.
He is co-creator and co-designer of the DEPS Language and the DEPS
Studio IDE.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center GmbH (“Springer Nature™).

Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers and authorised users (“Users”), for small-
scale personal, non-commercial use provided that all copyright, trade and service marks and other proprietary notices are maintained. By
accessing, sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of use (“Terms”). For these
purposes, Springer Nature considers academic use (by researchers and students) to be non-commercial.

These Terms are supplementary and will apply in addition to any applicable website terms and conditions, a relevant site licence or a personal
subscription. These Terms will prevail over any conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription
(to the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of the Creative Commons license used will
apply.

We collect and use personal data to provide access to the Springer Nature journal content. We may also use these personal data internally within
ResearchGate and Springer Nature and as agreed share it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not
otherwise disclose your personal data outside the ResearchGate or the Springer Nature group of companies unless we have your permission as
detailed in the Privacy Policy.

While Users may use the Springer Nature journal content for small scale, personal non-commercial use, it is important to note that Users may
not:

1. use such content for the purpose of providing other users with access on a regular or large scale basis or as a means to circumvent access
control;

2. use such content where to do so would be considered a criminal or statutory offence in any jurisdiction, or gives rise to civil liability, or is
otherwise unlawful;

3. falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association unless explicitly agreed to by Springer Nature in
writing;

4. use bots or other automated methods to access the content or redirect messages

5. override any security feature or exclusionary protocol; or

6. share the content in order to create substitute for Springer Nature products or services or a systematic database of Springer Nature journal
content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a product or service that creates revenue,
royalties, rent or income from our content or its inclusion as part of a paid for service or for other commercial gain. Springer Nature journal
content cannot be used for inter-library loans and librarians may not upload Springer Nature journal content on a large scale into their, or any
other, institutional repository.

These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not obligated to publish any information or
content on this website and may remove it or features or functionality at our sole discretion, at any time with or without notice. Springer Nature
may revoke this licence to you at any time and remove access to any copies of the Springer Nature journal content which have been saved.

To the fullest extent permitted by law, Springer Nature makes no warranties, representations or guarantees to Users, either express or implied
with respect to the Springer nature journal content and all parties disclaim and waive any implied warranties or warranties imposed by law,
including merchantability or fitness for any particular purpose.

Please note that these rights do not automatically extend to content, data or other material published by Springer Nature that may be licensed
from third parties.

If you would like to use or distribute our Springer Nature journal content to a wider audience or on a regular basis or in any other manner not
expressly permitted by these Terms, please contact Springer Nature at

onlineservice(@springernature.com

mailto:onlineservice@springernature.com

